
Problem Set 3

Due on Tuesday, Oct 15

1. Let f : 2U → R+ be a monotone submodular function, and let F be its multilinear extension.
Show that F is convex along any line of direction ei − ej for unequal i, j ∈ U . (ei is the
vectors that is all 0 except the i-th coordinate being 1.)

2. (Williamson-Shmoys Exercise 4.6) This exercise introduces a deterministic rounding technique
called pipage rounding. Let G = (A,B,E) be a bipartite graph; that is, each edge (i, j) ∈ E
has i ∈ A and j ∈ B. Assume that |A| ≤ |B| and that we are given nonnegative costs
cij ≥ 0 for each edge (i, j) ∈ E. A complete matching of A is a subset of edges M ⊆ E such
that each vertex in A has exactly one edge of M incident on it, and each vertex in B has
at most one edge of M incident on it. We wish to find a minimum-cost complete matching.
We can formulate an integer program for this problem in which we have an integer variable
xij ∈ {0, 1} for each edge (i, j) ∈ E, where xij = 1 if (i, j) is in the matching, and 0 otherwise.
Then the integer program is as follows:

minimize
∑

(i,j)∈E

cijxij

subject to
∑

j∈B:(i,j)∈E

xij = 1, ∀i ∈ A,

∑
i∈A:(i,j)∈E

xij ≤ 1, ∀j ∈ B,

xij ∈ {0, 1}, ∀(i, j) ∈ E.

Consider the linear programming relaxation of the integer program in which we replace the
integer constraints xij ∈ {0, 1} with xij ≥ 0 for all (i, j) ∈ E.

Show that given any fractional solution to the linear programming relaxation, it is possible
to find in polynomial time an integer solution that costs no more than the fractional solution.
(Hint: Given a set of fractional variables, find a way to modify their values repeatedly such
that the solution stays feasible, the overall cost does not increase, and at least one additional
fractional variable becomes 0 or 1.) Conclude that there is a polynomial-time algorithm for
finding a minimum-cost complete matching.

3. Consider the following min-cost coverage problem. We are given a monotone submodular
function f : 2V → N that is integer-valued ; we are also given a target q, 0 ≤ q ≤ f(V ). We
are interested in finding S ⊆ V as small as possible such that f(S) ≥ q. That is, we wish to
solve S∗ = argminS |S| s.t. f(S) ≥ q. Consider the greedy algorithm from problem 3(b) in
Problem Set 1. Let S0, S1, · · · be the sequence of sets picked by the greedy algorithm, and
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let ` be the smallest index such that f(S`) ≥ q. Show that

` ≤
(

1 + ln max
v∈V

f({v})
)

OPT,

where OPT = minS |S| s.t. f(S) ≥ q.
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