PROBLEM SET 1

Due on Tuesday, September 24

For all the following problems, you may assume that any valuation function is normalized $(v(\emptyset) = 0)$ and monotone $(\forall S \subseteq T, v(S) \le v(T)).$

- 1. Given a profile of valuation functions, there can be more than one Walrasian equilibrium. Suppose $(S_1, \dots, S_n, p_1, \dots, p_m)$ and $(S'_1, \dots, S'_n, p'_1, \dots, p'_m)$ are two Walrasian equilibria. Show that $(S_1, \dots, S_n, p'_1, \dots, p'_m)$ is still a Walrasian equilibrium. (This is sometimes known as the Second Welfare Theorem.)
- 2. In class we saw that the social welfare is maximized at a Walrasian Equilibrium. Recall that in a Walrasian equilibrium, no bidder would like to add or drop any item at the given prices. We may consider relaxing this condition: an allocation S_1, \dots, S_n and prices p_1, \dots, p_m is said to be a PS1 equilibrium if:
	- (a) no bidder would like to add any item: $\forall i, \forall T \supseteq S_i$, $v_i(S_i) \sum_{j \in S_i} p_j \ge v_i(T) \sum_{j \in T} p_j$;
	- (b) any unallocated item has price 0: $\forall j \in M \setminus (\cup_i S_i)$, $p_j = 0$.
	- (c) no bidder has negative utility: $\forall i, v_i(S_i) \sum_{j \in S_i} p_j \geq 0$.

Show that in any PS1 equilibrium, the social welfare is at least half of the optimal welfare. Formally, if $(S_1, \dots, S_n, p_1, \dots, p_m)$ is a PS1 equilibrium, then for any allocation $S_1^*, \dots, S_n^*,$
 $\sum_i v_i(S_i) \geq \frac{1}{2} \sum_i v_i(S_i^*)$. $i v_i(S_i) \geq \frac{1}{2}$ $\frac{1}{2} \sum_i v_i(S_i^*).$

- 3. Recall that a valuation function v is said to be *submodular* if it has decreasing marginal returns. That is, $\forall j, \forall S \subseteq T$, $v(\{j\} \cup S) - v(S) \ge v(\{j\} \cup T) - v(T)$.
	- (a) With n bidders, each with a submodular valuation, consider the following way of finding an allocation: initialize $S_1 = \cdots = S_n = \emptyset$; then for each item $j = 1, 2, \ldots, m$, give the item to the bidder whose current marginal value for j is the highest. Formally, let $i^* \in \arg \max_{i \in [n]} v_i(\{j\} \cup S_i) - v_i(S_i)$, update $S_{i^*} \leftarrow S_{i^*} \cup \{j\}.$

(Here we assume the bidders' values are publicly accessible, and we do not need to worry about incentives.)

Show that, when this procedure ends, the allocation (S_1, \dots, S_n) gives a 2-approximation to the optimal social welfare. That is, for any other allocation S'_1, \dots, S'_n , we have $\sum_i v_i(S_i) \geq \frac{1}{2}$ $\frac{1}{2}\sum_i v_i(S'_i)$.

(Hint: There are multiple ways to show this. One way is to make use of Problem 2. Can you come up with item prices to support S_1, \dots, S_n as a PS1 equilibrium?)

(b) (Bonus) Given a bidder with a submodular valuation function v , suppose we would like to know, among all bundles of size k , which one is valued the most, but, instead of asking the bidder directly this question, we can only query her the values of specific bundles (such a query is called a *value query*). We may employ the following greedy algorithm: initialize S to be Ø; while $|S| < k$, find item j with the maximum marginal value $v({j} \cup S) - v(S)$, add j to S, repeat.

Let S^G be the set returned by the greedy algorithm. Show that this is a $(1 - 1/e)$ approximation. That is, $\forall S$ such that $|S| = k$, $v(S^A) \geq (1 - \frac{1}{e})$ $\frac{1}{e})v(S).$

(This problem may feel fairly challenging. Discussion is welcome and encouraged.)