
Notes on Interim Feasibility of Bayesian Mechanisms

Hu Fu

November 16, 2017

1 Border’s Inequalities

We are given n bidders whose private types typei[1], . . . , tn are drawn independently from distri-
butions F1, · · · , Fn, respectively, and who are competing for a single item. The set of all Bayesian
incentive compatible, interim individually rational mechanisms is easily representable by a polytope
if we use xi(t) and pi(t) to denote the allocation and payment of each bidder i. However, if we
let Ti be the support of distribution Fi, then the input to this problem is of size

∑
i |Ti|, whereas

the number of variables is
∏

i |Ti|, which can be exponential in n compared with the input length.
Alternatively, one could consider using as variables the interim allocations and payments: for each
bidder i and type ti, let xi(ti) be Et−i [xi(ti, t−i)], and pi(ti) := Et−i [pi(ti, t−i)]. Then BIC and
interim IR constratins are still fairly easy to express;

tixi(ti)− pi(ti) ≥ tixi(t′i)− pi(t′i), ∀i,∀ti, t′i;
tixi(ti)− pi(ti) ≥ 0, ∀i,∀ti.

and so is the expected revenue:
∑

i

∑
ti
pi(ti). However, the feasibility constraints are trickier. With

the ex post allocations, they are easy to express: ∀i,∀t,
∑

i xi(t) ≤ 1. With interim allocations,
things are not that obvious.

Theorem 1. A set of interim allocation rules are feasible if and only if for every Si ⊆ Ti, i =
1, · · · , n, ∑

i

∑
ti∈Si

xi(ti)Fi(ti) ≤ 1−
∏
i

(1− Fi(Si)), (1)

where Fi(Si) denotes
∑

t∈Si
Fi(t).

1

The inequalities in Theorem 1 are known as the Border’s inequalities, as they were first proposed
and proved by Border (1991, 2007). The proof given here is equivalent to the approach in Che et al.
(2013), but is somewhat simpler.

Proof. The “only if” part is easy. Note that the right hand side of the inequality is the probability
with which any type in ∪iSi occurs, and the LHS the total allocation to types in ∪iSi. In order for
a mechanism to be feasible, the RHS is obviously an upper bound on the LHS.

For the “if” part, we use a network flow argument. Let’s build a graph consisting a source
node S⊥, a left group of nodes L, a right group of nodes R, and a sink node S>. Each node

1Throughout this note, we assume w.l.o.g. that the type spaces are disjoint.

1

in L corresponds to a type ti ∈ Ti, for some i; each node in R corresponds to a type profile
t = (t1, . . . , tn), where ti ∈ Ti,∀i. Without causing too much confusion, we will simply refer to the
nodes in L and R by their coresponding types and type profiles. There is an edge going from S⊥ to
each node in L, with capacity xi(ti)Fi(ti) for the edge going to the type ti. There is an edge going
from each node in R to S>, with capacity

∏
i Fi(ti) on the edge leaving the type profile (t1, . . . , tn).

For each node (t1, . . . , tn) in R, there are n edges going from the nodes in L that correspond to
t1, . . . , tn, respectively. The capacity on each of these edges is infinity.

Any implementation of x1, . . . , xn gives rise to a flow in the graph that saturates the first group
of edges (going from S⊥ to L). By the max-flow min-cut theorem, this is possible only if these
edges constitute a minimum cut of the graph. We will show that this is true precisely when the
inequalities in Theorem 1 hold.

Any cut that has S⊥ and S> on the same side must contain an edge with infinite capacity (that
connects L and R), and cannot be a minimum cut. So assume S⊥ and S> are on different sides of
the cut. If S1 ⊆ T1, · · · , Sn ⊆ Tn are the nodes in L on the same side with S⊥, in order that the cut
does not contain any edge with infinite capacity, the neighbors of S1, · · · , Sn in R must be precisely
the set of nodes in R that are also on this side. These are the type profiles which contain at least one
type from ∪iSi. Let Si be Ti\Si, then the size of the cut is

∑
i

∑
ti∈Si

xi(ti)Fi(ti)+Pr[t : ∃i, ti ∈ Si].
The condition that this cut cannot be the bottleneck of the flow is:∑

i

∑
ti∈Ti

xi(ti)Fi(ti) ≤
∑
i

∑
ti∈Si

xi(ti)Fi(ti) + Pr [t : ∃i, ti ∈ Si] .

Rearranging terms, this is just (1).

A mechanism expressed by its interim allocation and payments rules is said to be in its reduced
form. Theorem 1 allows us to precisely express the range of feasible mechanisms using only the
reduced form.

The number of constraints for interim feasibility, however, is still exponential in the length of the
input. With a polynomial number of variables and exponential number of constraints, it is natural
to consider using the ellipsoid method for optimization, for which we would need a separation
oracle. That is, we need a polynomial-time algorithm that outputs

arg minSi⊆Ti,∀i[1−
∏
i

(1− Fi(Si))]−
∑
i

∑
ti∈Si

xi(ti)Fi(ti).

Furthermore, even after we solve the linear programming with the interim allocations and
payments as variables, we would need to be able to implement them. Specifying all the ex post
allocations and payments amounts to an output length that is exponential in the input length.
What we need is an oracle that, given feasible interim allocation and payment rules, at an input
type profile t = (t1, . . . , tn), output ex post allocations and payments for each bidder, so that
in expectation the given interim allocations and payments are guaranteed to be implemented.
Section 2 provides an algorithm for the separation oracle, and Section 3 discusses the ex post
implmentation. In the end, Section 4 gives a few examples (beyond Myerson’s setting) to show the
power of this approach.

2

2 Separation Oracle via Submodular Minimization

If we define a function h : 2∪iTi → R as h(∪iSi) = [1−
∏

i(1−Fi(Si))]−
∑

i

∑
ti∈Si

xi(ti)Fi(ti), then
our task is to minimize this function. We show that h is submodular, and therefore polynomial-time
algorithms for submodular minimization would give us a separation oracle.

Definition 1. A set function f : 2M → R is said to be submodular if, for all S, T ⊆ T , f(S ∪ T) +
f(S ∩ T) ≤ f(S) + f(T). Further, f is monotone if for all S ⊆ T ⊆M we have f(S) ≤ f(T).

Proposition 1. A function is submodular if and only if, for any S ⊆ T ⊆ M and any j ∈ M ,
f(S ∪ {j})− f(S) ≥ f(T ∪ {j})− f(T).

The property in Proposition 1 is often called decreasing marginal value. The following proposi-
tion is left as an exercise.

Proposition 2. The function h is submodular.

The supplementary reading contains examples of submodular functions and a polynomial-time
algorithm for minimizing such functions. Hence we have a fast separation oracle for the Border’s
inequalities.

3 Ex post Implementation

Describing an ex post implementation given a feasible mechanism in its reduced form may seem
like a daunting problem, at least a priori. Absent structures, an ex post implementation generally
specifies, for every type profile, an allocation and a payment for each bidder, and this is exponential
in the input length, for product distributions. We will see in this section that, due to the submod-
ularity of the h functions, there always exists a succinctly reprensentable ex post implementation,
not only for the revenue optimal auction, but for interim feasible mechanism.

Definition 2. Given any submodular function f : 2M → R, the polymatroid associated with it is
{x ∈ RM

+ |∀S ⊆M,
∑

j∈S xj ≤ f(S)}.

We will write x(S) as a shorthand for
∑

j∈S xj . We also assume f(∅) = 0 throughout this
section.

From (1) in Theorem 1, we see that the set of interim feasible mechanisms is given by the
polymatroid associated with the monotone submodular function 1 −

∏
i(1 − Fi(Si)). We denote

this polymatroid by PB.

Plan. Given any interim feasible mechanism, which is a point in this polymatroid, we will decom-
pose it into a convex combination of vertices of the polymatroid. Such a decomposition gives rise
to a probability distribution over the vertices, which themselves correspond to feasible mechanisms;
implementing them according to this probability distribution amounts to implementing the given
mechanism. It therefore suffices to show that, (i) such a decomposition can be found efficiently, and
(ii) each vertex corresponds to a mechanism whose implementation can be succinctly described.

Note that a fast decomposition implicitly requires that the number of vertices used in the
decomposition cannot be too large. The existence of such a decomposition is guaranteed by the
well-known Carathéodory theorem:

3

Theorem 2 (Carathéodory). If a point x ∈ Rd lies in the convex hull of a set T , then x can be
written as the convex combination of at most d+ 1 points in T .

The following is also a well-known result from combinatorial optimization. For completeness,
we provide a proof.

Theorem 3. Each vertex of the polymatroid associated with a monotone submodular function f
corresponds to a chain of subsets ∅ = S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ M for some k, such that
|Sr \ Sr−1| = {jr} for r = 1, · · · , k (jr is an element in M), and xjr = f(Sr) − f(Sr−1) for
r = 1, · · · , k, and xj = 0 for any other j ∈M .

Proof. We make use of the fact that any vertex of a polytope is an optimal solution to the problem of
maximizing some linear objective within the polytope. Consider any linear objective

∑
j∈M ajxj .

We show that the following greedy algorithm produces the optimal solution: sort the elements
in M by aj , so that aj1 ≥ aj2 ≥ . . . ≥ ajk ≥ 0 > ajk+1

≥ . . . ≥ aj|M| ; let Sr be {j1, . . . , jr} and
x∗i [jr] = f(Sr)− f(Sr−1) for r = 1, · · · , k, and let x∗i [jr] = 0 for r > k.

We first show the feasibility of x∗. All its coordinates are nonnegative by the monotonicity of f .
We also need to show that for any S ⊆ M , x∗(S) ≤ f(S). We induct on the size of S. The base
case when S = ∅ is trivially true. Let’s assume x∗(S) ≤ f(S) for any S of size at most `− 1. Then
for any S of size `, let js be the last element in S (last according to the order j1, j2, . . . , j|M |. Then

x∗(S) = x∗(S \ {js}) + x∗i [js] ≤ f(S \ {js}) + f(Ss)− f(Ss−1) ≤ f(S),

where the first inequality is by the induction hypothesis, and the second by the submodularity of f .
We show the optimality by constructing a dual solution whose value matches that of the solution

by the greedy algorithm. Recall that the dual program is

min
∑
S⊆M

f(S)yS

s.t.
∑
S3j

yS ≥ aj , ∀j ∈M ;

yS ≥ 0, ∀S ⊆M.

Let y∗Sk
be ajk . Then for r = 1, 2, · · · , k − 1, let y∗Sr

be ajr − ajr+1 . For all other S ⊆M , let y∗S
be 0. It is easy to verify that this y∗ is dual feasible. We show optimality of both x∗ and y∗ by
showing that the dual program’s value given by y∗ is equal to primal program’s value given by x∗:

∑
S

f(S)y∗S = f(Sk)ajk +

k−1∑
r=1

f(Sr)(ajr − ajr+1) =

k∑
r=1

ajr(f(Sr)− f(Sr−1)) =
∑
j

ajx
∗
i [j].

Definition 3. A single-item auction is said to be a ranking mechanism if its allocation rule is
determined by a total order σ over the types ∪iTi and a null type ⊥: given any type profile, if any
type is ranked by σ before ⊥, the item is allocated to the type ranked first by σ; otherwise, no
bidder gets the item.

Proposition 3. Each vertex of the polymatroid PB corresponds to a ranking mechanism.

4

Proof. As we saw in the greedy algorithm, any vertex of PB corresponds to a chain of subsets
of ∪iTi: ∅ = S0 ⊆ S1 ⊆ · · · ⊆ Sk ⊆ ∪iTi. These are the sets of types for which the Border’s
inequalities (1) are tight. This means that whenever a type from one of these sets appears, that
type must be allocated the item. Since |Sr \ Sr−1| = 1 for r = 1, · · · , k, this effectively gives a
ranking for the types in Sk: the type in S1 has precedence over the type in S2 \ S1, which in turn
has precedence over the type in S3 \ S2, and so on. The greedy algorithm also sets the interim
allocation for all types not in Sk to 0. Therefore these types never receive the item, as specified in
the ranking mechanism.

Combining Theorem 2 and Proposition 3, we get the following characterization of any interim
feasible mechanism:

Theorem 4. Any interim feasible mechanism for selling a single item to n bidders with types drawn
independently from type spaces T1, · · · , Tn can be implemented by a distribution over

∑
i |Ti| + 1

ranking mechanisms.

4 Applications

We briefly give two natural scenarios of revenue maximization beyond the reach of Myerson’s
characterization, where we could nonetheless compute and implement the revenue optimal BIC
and interim IR auctions.

Example 1. Let there be n bidders bidding for a single item. The bidders’ values are drawn inde-
pendently from known distributions F1, · · · , Fn, but each bidder i has a publicly known budget Bi.
In addition to the interim IR and BIC constraints, the mechanism must never charge bidder i a
payment of more than Bi.

Remark 1. In fact, it is not hard to also write an LP for the case of bidders with private budgets,
in which case the budget becomes part of the type, drawn from a distribution.

Example 2. Let there be n bidders bidding for m items. Each bidder’s type describes an additive
valuation, that is, for any subset S of items, bidder i’s value is given by vi(S) =

∑
j∈S vi({j}).

Each bidder’s type is drawn independently from known distributions F1, · · · , Fn.

In this example, besides the obvious IC and IR constraints, the interim feasibility constraints
are simply the concatenation of those for each item.

References

Border, K. C. (1991). Implementation of reduced form auctions: A geometric approach. Econo-
metrica, 59(4):1175–87.

Border, K. C. (2007). Reduced form auctions revisited. Economic Theory, 31(1):167–181.

Che, Y.-K., Kim, J., and Mierendorff, K. (2013). Generalized reduced-form auctions: A network-
flow approach. Econometrica, 81(6):2487–2520.

5

	Border's Inequalities
	Separation Oracle via Submodular Minimization
	Ex post Implementation
	Applications

