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Recall that we defined the Price of Anarchy (PoA) of a game with respect to a certain objective
function as the largest gap, measured as a rato, between the best achievable objective and the
objective in a worst possible equilibrium of the game. In this lecture we consider PoA of auctions,
and throughout we focus on social welfare as the objective. In the process, we develop a framework
for proving PoA, that of smootheness, first developed by Roughgarden (2015).

1 PoA for First Price Auctions

Notations: Let bidder i have value vi for the item, and her bid is denoted by bi. We allow
ranodmized strategies, and strategy si is a distribution over bids.1 Let (sN1 , . . . , s

N
n ) be a Nash

equilibrium. For now we consider full information game, i.e., everyone knows everyone else’s value.
From an equilibrium point of view though, what matters is only the distribution of the other
bidders’ bids, and not their values. Let ui(si, s−i) denote the utility of bidder i.

Let us make a first attempt at bounding the PoA for a single item first price auction. The idea
is to consider possible deviations that bidders could make. The utilities of these deviations (when
the other bidders keep playing sN−i) should bear a relationship to the optimal social welfare, and
we would like that the equilibrium condition ui(s

N
i , s

N
−i) ≥ ui(s

∗
i , s

N
−i), where s∗i is the deviation

considered, would lead to a statement about the Nash welfare with respect to the optimal welfare.

Theorem 1. A single item first price auction has PoA at most 2.

First proof. 2 It is not hard to see that, if a pure Nash exists in the first price auction, it actually
has to be efficient (i.e., welfare optimal): if the bidder with the highest value vi∗ is not winning,
the highest bid on the item must be more than vi∗ , which means the winner incurs negative utility,
a contradiction. Therefore only the mixed equilibria are interesting.

Let i∗ be the bidder with the highest value, and consider a deviation of bidding b∗i∗ = vi∗
2 .

Let x1, . . . , xn be the probability that bidder i wins the auction in the Nahs equilibrium. The
equilibrium condition gives us

ui(s
N
i , s

N
−i) = vi∗xi∗ −E

[
bi∗ · 1bi∗≥max bj

]
≥ ui(b∗i∗ , sN−i) =

vi∗

2
·Prbj∼sNj

[
max
j 6=i∗

bj <
vi∗

2

]
.

1With a slight abuse of notation, we use bi to denote the pure strategy of bidding bi.
2The language of this proof aims to explain the thought process. Its style is not recommended for formal mathe-

matical writing.
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Note that vi∗ is the optimal social welfare. So the RHS already looks like a fraction of the optimal
social welfare. If the probaiblity in it is 1, then we immediately get a PoA of 2 (because the Nash
social welfare is lower bounded by LHS, the utility of bidder i∗). But what happens when some
bj is higher than vi∗

2 ? That means someone else must have a value larger than vi∗
2 , and whenever

that happens, the social welfare of no lower than vi∗
2 is generated, because in a first price auction,

bidders never bid more than their values. To formalize this idea, note that for all other bidders,

uj(s
N
j , s

N
−j) = vjxj −E

[
bj · 1bj>maxk bk

]
≥ 0.

Summing everything up, we have

∑
i

vixi ≥
vi∗

2
·Prbj∼sNj

[
max
j 6=i∗

bj <
vi∗

2

]
+ Ebi∼sNi

[
max
i
bi

]
≥ vi∗

2
,

where the second inequality comes from the fact that, whenever the event in the first term does
not happen, maxi bi is at least vi∗

2 .

Second proof. Looking at the proof more carefully, we see that as we sum up ui(s
N
i , s

N
−i), we get∑

i vixi −
∑

i pi, where pi is the expected payment made by bidder i in the Nash equilibrium. To
bound the social welfare

∑
i xivi, it suffices to construct deviations b∗i such that

∑
i

ui(b
∗
i , s

N
−i) ≥

1

2
OPT−

∑
i

pi =
1

2
OPT−Ebi∼sNi

[
max
i
bi

]
. (1)

Now it is easy to see that setting b∗i∗ to be vi∗
2 suffices to guarantee ui∗(b∗i , s

N
−i) to be at least the

RHS of (1): when b∗i∗ is the highest bid, the utility of i∗ is vi∗
2 , which is trivially at least the RHS;

when b∗i∗ is not the highest, bidder i∗ gets utility 0 while the RHS of (1) is negative. Therefore for
all other i 6= i∗, we need just b∗i (and hence ui(b

∗
i , s

N
−i)) to be 0. This completes the proof.

2 Smooth Mechanisms

The second proof of Theorem 1 has the advantage that the proof simply aims at finding deviations
whose utilities satisfy (1); what remains is mechanical manipulation to derive a PoA bound from
(1). We will see in Section 4 that this approach has other significant advantages. The next definition
formalizes this proof strategy.

Definition 1. 3 A mechanism is (λ, µ)-smooth, λ, µ ≥ 0, if for any value profile ~v = (v1, . . . , vn),
any strategy s1, . . . , sn, there exists for each bidder i a deviation s∗i (~v, si(vi)), such that∑

i

uvii (s∗i (~v, si(vi)), s−i(v−i)) ≥ λOPT − µ
∑
i

pi(si(vi), s−i(v−i)), (2)

where uvii is the utility of bidder i with value vi.

3There are several definitions of smooth games/mechanisms in the literature. They are similar in spirit but not
altogether comparable. We adhere here to the definition in Syrgkanis and Tardos (2013). For our illustrations we
will not make use of the deviation’s dependence on the player’s own strategy.
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Note that we allow randomized strategies, and uvii and pi both have expectations implicit. The
next theorem formalizes the “mechanical” part of the proof for Theorem 1.

Theorem 2. A (λ, µ)-smooth mechanism has PoA at most max{1,µ}
λ , assuming each bidder has an

action that guarantees utility 0.

The action guaranteeing zero utility can be bidding 0 or not participating the auction.

Proof. Recall that (sN1 , . . . , s
N
n ) is an equilibrium, hence for each i, uvii (sNi , s

N
−i) ≥ u

vi
i (s∗i (~v, s

N
i ), sN−i),

where s∗i is the strategy in 1. Summing up the inequalities, we have∑
i

uvii (sNi , s
N
−i) = SWN −

∑
i

pi(s
N
i , s

N
−i) ≥

∑
i

uvii (s∗i (~v, s
N
i ), sN−i) ≥ λOPT−µ

∑
i

pi(s
N
i , s

N
−i),

where we use SWN to denote the social welfare of the Nash equilibrium. Moving the term∑
i pi(s

N
i , s

N
−i), we have

SWN ≥ λOPT + (1− µ)
∑
i

pi(s
N
i , s

N
−i).

For µ ≤ 1, obviously SWN ≥ λOPT. For µ > 1, note that SWN ≥
∑

i pi(s
N
i , s

N
−i) (otherwise some

bidder has negative utility and can play the quitting action), and so

µ SWN = SWN +(µ− 1) SWN ≥ SWN +(µ− 1)
∑
i

pi(s
N
i , s

N
−i) ≥ λOPT,

and SWN ≥ λ
µ OPT.

3 A better bound for the first price auction

Equipped with a definition for smooth games and Theorem 2, let us try to improve the PoA bound
for first price auctions. Looking at inequality (1), we see that the deviation b∗i∗ we devise is rather
loose: when max bi is vi∗

2 − ε, the RHS is almost 0, whereas the LHS is vi∗
2 . Intuitively, we would

like to have a deviation b∗i∗ such that, no matter how much max bi is, the inequality (2) is about
tight for some fixed λ and µ. It is not hard to see that, for a deterministic deviation b∗i∗ , (1) is the
best one can do. (Convince yourself of this.) But we can have a randomized b∗i∗ instead. Let’s fix µ
to be 1, and we would like to have that, for any value of maxi bi, the expected utility of deviating
to b∗i∗ is λvi∗ −max bi, for some λ. Let the density of b∗i∗ at v be g(v), then

uvii∗(b∗i∗ ,max
i 6=i∗

bi = v) =

∫ v∗i

v
(vi∗ − s)g(s) ds.

We hope this to be equal to λOPT−v. Taking derivative with respect to v on both sides, we
get (vi∗ − v)g(v) = 1, which suggests that we should have g(v) = 1

vi∗−v
. Let λ be 1 − 1

e . Since∫ λvi∗
0

1
vi∗−v

dv = 1, we’ll let the deviation b∗i∗ be distributed on [0, λvi∗ ] with density 1
vi∗−v

. As
before, for all other bidder i, b∗i is to bid simply 0. It is not hard to verify∑

i

uvii (b∗i , s
N
−i) ≥ λvi∗ −

∑
i

pi(s
N
i , s

N
−i),

which shows that the first price auction is a (1− 1
e , 1)-smooth game.
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Theorem 3 (Syrgkanis and Tardos, 2013). The first price auction is a (1 − 1
e , 1)-smooth game,

and hence has PoA at most e
e−1 .

Exercise 1. Prove Theorem 3 using the deviation we have just derived.

4 Extension theorem

One of the major advantages of showing PoA with smoothness is that the PoA bound we prove often
extends to more general equilibrium concepts for free. For example, let’s consider an incomplete
information game, where each bidder’s type is drawn from the product distribution F1×F2 · · ·×Fn,
and Bayesian Nash Equilibrium is the proper solution concept.

Theorem 4 (Roughgarden, 2015; Syrgkanis, 2012). At any Bayesian Nash equilibrium of a (λ, µ)-
smooth game, the expected social welfare is at least λ

max{µ,1} fraction of the optimal expected social
welfare.

In other words, the Bayesian Price of Anarchy (BPoA) is at most max{µ,1}
λ . As an immediate

corollary of Theorem 3, we have

Corollary 5. A first price auction where bidders’ values are drawn from a product distribution has
BPoA at most e

e−1 .

A näıve attempt at proving the theorem is to use the deviation s∗i (~v, s
N
i ) in the definition

of smooth games, and argue that E[uvii (sNi (vi), s
N
−i(v−i))] ≥ E[uvii (s∗i (~v, s

N
i (vi)), s

N
−i(v−i))]. This,

however, is not true. The BNE condition only says that the utility of strategy sNi is no less than that
of any other strategy played against sN−i(v−i); this other strategy, however, cannot depend on any
knowledge on the realization of the other bidders’ types or strategies. In some sense, the deviation
s∗i in 1 allows more power than can be used in a näıve application of the BNE condition. For
this reason, we need a “Doppelgänger” trick, which simulates s∗i without resorting to the actual
realization of v−i, but by resampling the types (and simulating the equilibrium strategies using
these samples). Linearity of expectation and independence will be crucial in guaranteeing that this
leads to the PoA expression we hope for.

Proof of Theorem 4. For each player i, let ~w be a profile of types drawn independently from F1 ×
· · · × Fn. Consider the utility of deviation s∗i ((vi, ~w−i), s

N
i (wi)):

E~v

[
uvii (sN (~v))

]
≥ E~v,~w

[
uvii (s∗i ((vi, ~w−i)), s

N
i (wi)), s

N
−i(~v−i))

]
= E~v,~w

[
uwi
i (s∗i ((wi, ~w−i), s

N
i (vi)), s

N
−i(v−i))

]
= E~v,~w

[
uwi
i (s∗i (~w, s

N
i (vi)), s

N
−i(~v−i))

]
.

In the first equality, we used the independence among vi, wi, ~w−i and ~v−i. Note that the
probability that we see a pair (vi, wi) is the same as the probability we see (wi, vi).
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Summing up, we have

E~v

∑
i

uvii (sN (~v))

 ≥ E~v,~w

∑
i

uwi
i (s∗i (~w, s

N
i (vi)), s

N
−i(~v−i))


≥ E~v,~w

λOPT(w)− µ
∑
i

pi(s
N (~v))


= λE~w

[
OPT(w)

]
− µE~v

∑
i

pi(s
N (~v))

 .
The second inequality is the consequence of the smoothness of the game. Note that OPT, which
is the sum of bidders’ values in the optimal allocation, is a function of the actual types ~w of
the bidders, whereas the payments depend only on the bidders’ strategies, and are therefore are
functions of sN (~v).

Now the same argument as in the proof of Theorem 2 gives us the BPoA bound.

5 Composability: Simultaneous item auctions retain smoothness

Another advantage of the smoothness framework is that it allows us to compose (λ, µ)-smooth
mechanisms while maintaining smoothness, where by composing we mean running multiple mech-
anisms simultaneously, and we allow bidders to have combinatorial preferences over the outcomes
of these mechanisms (under some restrictions on the valuations). For example, we have seen that
the first price auction is (1 − 1

e , 1)-smooth. Suppose we have m items to sell, and each bidder
has combinatorial valuations over these items, we may consider running the following simultaneous
item auction:

Definition 2. In a simultaneous first price auction, every bidder puts a bid bij on each item
simultaneously. Then each item is allocated to the highest bidder for that item and each bidder
pays for her bid on each item she wins.

By the homework you should have convinced yourselves that any pure Nash of this auction
maximizes the social welfare. The next theorem shows that when each bidder has XOS valuations,
then the simultaneous first price auction inherits the smoothness of the single item first price
auction, and has Bayesian PoA of 1− 1/e.

Definition 3. A valuation v : 2M → R is XOS if for every S ⊆ M , there exists an additive
valuation aS such that aS(S) = v(S), aS(T ) ≤ v(T ) for all T ⊆ S, and aS(j) = 0 for all j /∈ S.

Exercise 2. Show that any submodular valuation is XOS.

Theorem 6 (Syrgkanis and Tardos, 2013). A combinatorial auction that runs a (λ, µ)-smooth
auction simultaneously for each item is (λ, µ)-smooth, if all bidders have XOS valuations. 4

4The result in ?? is more general, by extending the definition of XOS from valuations over items to valuations
over outcomes.
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Corollary 7. A simultaneous first price auction in which all bidders have XOS valuations is (1−
1
e , 1)-smooth, and hence has Bayesian PoA of e

e−1 .

Proof of Theorem 6. We prove the case for Nash equilibrium, and the proof of Theorem 4 extends
the analysis to Bayesian PoA. Let pij(~s) denote the expected payment made by player i in the
auction for item j, when players play strategies ~s.

Given valuation profile (v1, . . . , vn), let (S∗1 , · · · , S∗n) be an optimal allocation that maximizes
social welfare. Recall that by 3, for each bidder i there is an additive valuation ai,S∗

i
such that

ai,S∗
i
(T ) ≤ vi(T )T for all T ⊆M and ai,S∗

i
(S∗i ) = vi(S

∗
i ). For each bidder i, let s∗i be the deviation

where for each item j, the bidder bids according to the deviation s∗i ((ai,S∗
i
, a−i,S∗

−i
), sNi (vi)) given

by the definition of smoothness (2). For each item j ∈ S∗i∗ , by smoothness we have∑
i

u
ai,S∗

i
i (s∗i , s

N
−i) ≥ λai∗,S∗

i∗
(j)− µ

∑
i

pi,j(s
N (~v)).

Summing over the items, we have∑
i

u
ai,S∗

i
i (s∗i , s

N
−i) ≥ λ

∑
i

ai,S∗
i
(S∗i )−

∑
i

pi(s
N ) = λOPT−

∑
i

pi(s
N ),

where we crucially used that ai,S∗
i
(S∗i ) = vi(S

∗
i ). By the equilibrium condition, we have∑

i

uvii (sNi , s
N
−i) ≥

∑
i

uvii (s∗i , s
N
−i) ≥

∑
i

u
ai,S∗

i
i (s∗i , s

N
−i) ≥ λOPT−

∑
i

pi(s
N ),

where the second inequality comes from the fact that vi(S) ≥ ai,S∗
i
(S) for any S ⊆M . This shows

the smoothness of the simultaneous auction.

6 The case of subadditive valuations: a tantalizing non-smooth
analysis

As the class of valuations gets larger, computing good approximations of the optimal social wel-
fare becomes harder, and designing tractable auctions that are incentive compatible are even more
so. We have seen that for gross substitute valuations one can run run the VCG auction in time
polynomial in n and m, and achieves optimal social welfare. In class we have seen that with
maximial-in-distributional-range mechanisms, one can design O(1) approximately optimal mecha-
nisms for some classes of valuations that are complement free. In general, however, designing O(1)
approximately optimal incentive compatible auctions is very challenging, even when one is allowed
unbounded computational power but polynomial amount of communication. In fact, strong lower
bounds are known when communication is restricted to value oracles (Dobzinski, 2011; Dughmi and
Vondrák, 2015), and, even allowing general communications, the best currently known incentive
compatible approximation for submodular and XOS valuations is O(

√
logm) (Dobzinski, 2016).

In comparison, it is remarkable that simple auctions such as the simultaneous first price auction
guarantee O(1) approximations to the optimal social welfare at any equilibrium.

To further appreciate the power of the simultaneous item auction, we look at the most general
class of valuations that are complement free: a valuation function v : 2M → R is said to be
subadditive if for all S, T ⊆M , v(S) + v(T ) ≥ v(S ∪ T ).
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Exercise 3. Show that any XOS valuation is subadditive.

Remark 1. Over the semester we have seen a hierarchy: gross substitute valuations are submod-
ular, submodular valuations are XOS, and XOS valuations are subadditive.

The following theorem confirms that the simultaneous first price auction has O(1) PoA for all
complement-free valuations.

Theorem 8. (Feldman et al., 2013) The simultaneous first price auction with subadditive bidders
has Bayesian PoA of at most 2, assuming bidders’ types are drawn from a product distribution.

The proof of Theorem 8 is not exactly a smoothness argument, because the deviations we
consider will depend on the other bidders’ Nash strategies (and not only on their types). However,
the overall argument still resembles that for the smooth games.

Proof. We will prove the PoA for Nash equilibrium only. The extension argument to the Bayesian
PoA is a twist on (although not a replica of) that of Theorem 4, and is left as an exercise.

Let (sN1 , . . . , s
N
n ) be a Nash equilibrium. Given valuation profiles (v1, . . . , vn), let (S∗1 , · · · , S∗n)

be an allocation that maximizes the social welfare. Let q−i ∈ RM be a vector whose coordinate for
any j /∈ S∗i is 0, and for any j ∈ S∗i is equal to the random variable representing the highest bid
put by a bidder other than i on j, when each bidder bids accords to her Nash strategy. Let B−i
be the distribution of q−i. For each bidder i, consider the following deviation s∗i : draw a vector
b∗i from the distribution B−i, and bid that on the items. In plain language, the deviation bids 0
on all items outside S∗i , and imitates on S∗i the randomized prices set by the other bidders in the
equilibrium.

The key observation is that

uvii (s∗i , s
N
−i) ≥

1

2
vi(S

∗
i )−

∑
i∈N,j∈S∗

i

pij(s
N ).

We only need to argue that the expected value for bidder i when deviating to s∗i is at least
1
2vi(S

∗
i ), as the expected payment she makes is obviously upper bounded by

∑
i∈N,j∈S∗

i
pij(s

N )

— the sum of her bids altogether is
∑

j∈S∗
i

E[q−i(j)], which is bounded by
∑

i∈N,j∈S∗
i
pij(s

N ) =∑
j∈S∗

i
Ebk∼sNk

[maxk∈N bk(j)]. Now to see the bound on the value, notice that for any realization

of q−i and b∗i , suppose S is the set of items won by bidder i when she bids b∗i and the highest bids
put by the other bidders are q−i, then S∗i \ S is the set she wins when she bids q−i and the other
bidders’ highest bids are b∗i . By construction, these events occur with exactly the same probability,
and therefore her expected value for the set she wins, when conditioning on any realization of the
two vectors without specifying which one is which, is equal to 1

2vi(S) + 1
2vi(S

∗
i \ S) ≥ 1

2vi(S
∗
i ),

where the inequality comes from subadditivity. As this bound holds for any conditioning, it holds
in expectation as well.

Now applying the Nash condition, we see that∑
i

uvii (sNi , s
N
−i) ≥

∑
i

uvii (s∗i , s
N
−i) ≥

1

2

∑
i

vi(S
∗
i )−

∑
i∈N,j∈M

pij(s
N ) =

1

2
OPT−

∑
i

pi(s
N ).

Cancelling out the payments on both sides leads to the conclusion.
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Remark 2. As a consequence of a more general result by Roughgarden (2014), any auction that
uses subexpoential amount of communication must have PoA of at least 2 for subadditive valuations.
In this sense, the simultaneous first price auction has the best price of anarchy among all such
auctions. Roughgarden’s proof makes use of lower bounds for nondeterministic communication
protocols, which are beyond the scope of this course. The interested reader should refer to the
paper or the lecture notes by Tim Roughgarden.
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