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1 MIR and MIDR mechanisms

As we discussed in class, VCG mechanisms require optimizing the social welfare exactly, which
is in general NP-hard. Replacing the welfare computations in a VCG mechanism by outputs of
approximation algorithms, however, does not yield incentive compatible mechanisms.

One way to remedy this is to restrict the range of allocations in our computation of optimal
social welfare. That is, if we restrict ourselves upfront to a certain set of allocations, over which
we could perform exact optimization of social welfare efficiently, then using the welfare-maximizing
allocations restricted to this set in a “VCG-based” mechanism would preserve the incentive com-
patibility. (Try showing this by yourself.)

Definition 1. A mechanism is maximal-in-range if there is a range of allocations R independent
of the bidders’ valuations, such that for all reported valuations v1, . . . , vn, the mechanism returns
an allocation (S1, · · · , Sn) in arg max(T1,··· ,Tn)∈R

∑
i vi(Ti), and the payment for bidder i is equal

to
∑

j 6=i vj(Sj)−max(T1,··· ,Tn)∈R
∑

j 6=i vj(Tj).

Proposition 1. An MIR mechanism is DSIC.

The crux of an MIR mechanism is a tradeoff in the design of the range R: it should be, on the
one hand, large and complex enough so that for any profile of valuations (maybe restricted to a
certain class), there exists an allocation in R that gives a desired approximation for the optimal
social welfare; on the other hand, R needs to be small or structured enough so that we have
computational tools to optimize over it efficiently.

Example 1. Let the range R consist of n allocations, where the i-th allocation gives the whole
bundle M to the i-th bidder, and all other bidders get nothing. Enumeration suffices to optimize
over this range, and for all monotone valuations this trivially gives an n-approximation to the
optimal social welfare.

Example 2. A 2-approximation MIR mechanism for multi-unit auctions (Dobzinski and Nisan,
2010) (see Section 3 of Tim Roughgarden’s lecture notes).

There is no reason to restrict ourselves to consider only deterministic mechanisms. One may
naturally generalize the definition of an MIR mechanism to a maximal-in-distributional-range mech-
anism, where elements in the range R are not allocations, but distributions over allocations. As
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long as the bidders are risk-neutral (recall our discussion from earlier lectures), this preserves the
incentive compatibility of the mechanism.

Definition 2. A mechanism is maximal-in-distributional-range if there is a range of distributions
over allocations, R, independent of the bidders’ valuations, such that for all reported valuations
v1, . . . , vn, the mechanism returns an allocation (S1, · · · , Sn) drawn from a distribution D∗ ∈ R,
where D∗ is in

arg maxD∈RE(T1,··· ,Tn)∼D

∑
i

vi(Ti)

 ,
and the payment of bidder i is

∑
j 6=i vj(S

′
j)−

∑
j 6=i vj(Sj) where (S′1, · · · , S′n) is drawn from distri-

bution D∗i ∈ R and D∗i is in

arg maxD∈RE(T1,··· ,Tn)∼D

∑
j 6=i

vj(Tj)

 .
Proposition 2. An MIDR mechanism is DSIC for risk-neutral bidders.

2 Using LP relaxations to construct MIDR mechanisms

It may not be clear why extending the notion of MIR mechanisms to MIDR should be helpful, and
therefore it may come surprising that several creative ways have been discovered to leverage the
additional power of randomization allowed by MIDR mechanisms. In this lecture we will see one
of these, an ingenious method proposed by Lavi and Swamy (2011), looking at LP relaxations and
certain rounding schemes as a way to construct MIDR mechanisms.

Consider some high-dimensional representation of all feasible allocations. The convex body
they span is then a polytope whose vertices are all integral. Let’s call that polytope I. When the
social welfare maximization problem is NP-hard, the number of its hyperfaces and the number of
such vertices are both exponential. An LP relaxation is often formed by naming a different set of
hyperplanes which “surround” the integral vertices. The polytope formed by these hyperplanes,
denoted by P , contains all the original integral vertices and hence I, but is usually larger, and has
its own vertices. The configuration LP we have seen is one such relaxation. It contains all vectors
representating valid allocations, but has new vertices which do not correspond to valid allocations.
Recall that the integrality gap of P is the largest ratio between the value of a linear objective
realizable on a vertex of P and the value of the same objective realizable on a vertex of I.

Example 3. Consider three single-minded bidders and three items. Bidder 1 has positive value of 2
only for the bundle {1, 2} and doesn’t care for anything not containing both these items; bidder 2
is similar, but her desired bundle is {2, 3}, and bidder 3 desires only {1, 3}. It is obvious then
that the optimal social welfare is 2, because we cannot satisfy more than one bidder. However, a
valid solution to the configuration LP is to give {1, 2} to bidder 1 with probability 1

2 , and {2, 3} to
bidder 2 with probability 1

2 , and {1, 3} to bidder 3 with probability 1
2 . (Check that this satisfies

the configuration LP.) This “fractional” allocation generates a social welfare of 3. (Note that the
valuations here are not gross substitute!)
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In general, the solution to an LP relaxation gives an upper bound to the problem we are
originally interested in. An important class of approxamation algorithms try to turn these infeasible
fractional solutions to feasible integral solutions, while losing as little as possible in the objective
function. This approach is called rounding. In fact, this is one of the most important techniques
in the modern toolbox for approximation algorithm design.

An observation by Lavi and Swamy (2011) is the following: if a rounding scheme works by
shrinking an LP relaxation solution ~s by a fixed ratio α, and somehow showing that the shrunk
solution ~s′ must lie in the original integral polytope I, then by expressing ~s′ as a convex decom-
position of vertices of I, one can see the shrunk solution ~s′ as a distribution over allocations. In
other words, if one can show that the polytope P , after being shrunk by a factor of α to a smaller
polytope P ′, is fully contained in the integral polytope I, then the smaller polytope P ′ may as well
be seen as a range of distributions over allocations. Since we were doing exact optimization over the
relaxed polytope P , the shrunk solution we return as a distribution over allocations is maximum
in P ′, the fixed range of distributions over allocations. We then get an MIDR mechanism!

Figure 1: An over-simplified illustration of an LP relaxation, the shrunk polytope, and the convex
decomposition in terms of vertices of the integral polytope.

There are a few caveats to this approach. First, MIDR mechanisms require that the range
must be fixed before any valuation is seen. Therefore, the polytope P must not depend on any
information privately held by the bidders. For instance, the configuration LP satisfies this condition.
Second, in the rounding procedure, all solutions should be shrunk by the same factor. This is to
guarantee that we have exact maximum in the range. Third, we need to be able to compute a valid
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convex decomposition of the shrunk solution in polynomial time. In fact, Lavi and Swamy (2011)
showed a way to do this decomposition for the configuration LP via the ellipsoid method, where the
separation oracle is given by an integrality gap verifying approximation algorithm. For the sake of
time, we will not be able to cover this part of their result, and interested students are encouraged
to consult Chapter 12.3 of the AGT book, or the original paper. Instead, we will in the next section
look at a specific example, in which a famous approximation algorithm for scheduling developed in
the 1990s (Shmoys and Tardos, 1993) applied via this framework to give a 2-approximation MIDR
mechanism for the Generalized Assignment Problem (GAP).

3 A 2-approximation MIDR mechanism for the Generalized As-
signment Problem (GAP)

In a generalized assignment problem, we have n bidders and m resources. Each bidder i has
value vi(j) for resource j, but has only limited capacity to hold the resources. In particular, the
capacity of bidder i is Bi, and each resource j will occupy cij from her capacity. Therefore, when
allocated a bundle S of resources, her value is

max
T⊆S:

∑
j∈T cij≤Bi

∑
j∈T

vi(j).

Importantly, only the values vi(j)’s are private information, whereas the bidders’ capacities Bi’s
and the weights cij ’s are all public information. Our goal is design an MIDR mechanism that
maximizes the social welfare.

Remark 1. Here communicating the whole valuation function is easy (there are only m real
numbers to report), whereas computing a value query (or a demand oracle) is NP-hard as it is a
knapsack problem. It is easy to see then that the social welfare maximization problem is NP-hard
also. In fact, the latter is strictly harder than the former. As we know, the knapsack problem
has a pseudo-polynomial time algorithm, whereas the welfare maximization problem is hard even
when the Bi’s are polynomially bounded, which can be seen by a reduction from the bin-packing
problem (Roughgarden and Talgam-Cohen, 2015). In this case, the value/demand oracle is said to
be weakly NP-hard, whereas the social welfare maximization problem strongly NP-hard.

The main result we are to prove here, through the framework explained in the previous section,
is the following theorem.

Theorem 1. There is a polynomial time computable, MIDR mechanism that gives a 2-approximation
for the generalized assignment problem.

Let’s first see that there is a natural LP relaxation for the problem. Let xij denote whether
item j is allocated to bidder i. Consider the following LP:
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max
∑
i,j

vi(j)xij (GAP)

s.t.
∑
i

xij ≤ 1, ∀j ∈M, (1)∑
j

cijxij ≤ Bi, ∀i ∈ N, (2)

xij ≥ 0, ∀i, j. (3)

The first set of constraints prevent any item to be over allocated. The second set of constraints
say no bidder gets unnecessary items once her capacity is hit. It is true that not all feasible
allocations are enclosed in the polytope specified by these constraints, but once we take away from
bidders the items that are rendered useless by the capacity constraints, we see that the remaining
allocation does lie in the feasible region of (GAP).

It is important to note that the feasible region given by (GAP) does not depend on any private
information held by the bidders.

As mentioned, the following rounding scheme is the one given by Shmoys and Tardos (1993), who
studied the minimization version of the problem in the context of scheduling; Chekuri and Khanna
(2000) pointed out the 2-approximation algorithm implicit in it for the maximization problem. The
applicability of this algorithm to the design of MIDR mechanism via Lavi and Swamy was first
observed by Dughmi and Ghosh (2010).

Our mechanism first solves the LP relaxation (GAP). Let x∗ be the solution vector. We will
find a convex composition of x∗ into integral allocations, whose expected social welfare is exactly
equal to 1

2

∑
ij vi(j)x

∗
ij . We will use the following well-known theorem, whose proof can be found

in many resources.

Theorem 2 (Birkhoff - von Neumann). The matching polytope for a bipartite graph (L,R,E)
defined by ∑

i∈L:(i,j)∈E

xij ≤ 1, ∀j ∈ R, (4)

∑
j∈R:(i,j)∈E

xij ≤ 1, ∀i ∈ L, (5)

xij ≥ 0, ∀i ∈ L, j ∈ R (6)

has integral vertices representing matchings. Moreover, a convex decomposition of a point in this
polytope into its vertices can be found in polynomial time.

Remark 2. If n = m and if we tighten all the inequalities in (4) and (5) into equalities, we can
view the vector xij ’s as an n by n matrix with nonnegative entries, whose rows and columns all sum
to 1. Such matrices are called doubly stochastic matrices. A permutation matrix is a square matrix
with 0, 1 elements, and each row and each column of it has exactly one nonzero element (that is,
1). The Birkhoff-von Neumann then says that every doubly stochastic matrix can be written as a
convex combination of permutation matrices. This is the usual way in which the theorem is stated.
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Our attempt to decompose x∗ will be to place it in a matching polytope and then invoke
Birkhoff-von Neumann theorem. If we look at the constraints of (GAP) which x∗ij respects, (1)
already looks like one side of the matching constraints. On the other side, however,

∑
j x
∗
ij can

certainly be more than 1, as a bidder is allowed to receive more than one item. The idea is to split
each bidder into several nodes, such that each node is given only part of the x∗ij ’s, and the sum of
each part does not exceed 1. In this form, we would have a feasible point in a matching polytope,
and we can invoke the Birkhoff-von Neumann theorem to get a distribution of matchings. Given a
matching, an allocation can then be read off: item j goes to bidder i if the item node is matched
to one of the bidder nodes.

However, we need to do this carefully, because our ultimate goal is that the expected welfare
should remain unchanged. As long as we respect the capacity constraints, everything is linear, the
expectation of allocations being equal to x∗ guarantess the expected social welfare being equal to
the LP value of x∗. But once the allocation hits a budget Bi for any bidder i, the valuation is
capped and we no longer have linearity — this would be so messy that we never want to run into
the situation.

We now construct a bipartite graph using x∗. On the right hand side are m nodes corresponding
to the items. On the left hand side, for each bidder i, we create ki = d

∑
j x
∗
ije nodes. Name them

Li1, · · · , Liki . Edges are added in the following way. For each bidder i, rank the items by her value
in a non-increasing order. Without loss of generality, assume ci1 ≥ ci2 ≥ · · · ≥ cim. We then add
an edge connecting the first bidder i node, Li1, with item 1 with weight x′i11 = x∗i1, another edge
connecting Li1 with item 2 with weight x′i12 = x∗i2, etc., until the point where the total weight of
the edges incident to Li1 hits 1. At that point, we say Li1 is saturated and we move on to Li2.
Suppose Li1 was saturated when we were adding item j, we let the edge connecting Li1 with item j
carry a weight x′i1j such that the total weight of edges incident to Li1 is equal to 1, and whatever
weight is left in x∗ij (that is, x∗ij − x′i1j), we put on an edge connecting Li2 and item j. We then
continue this with item j + 1 and so on until Li2 gets saturated and we move on to the Li3. We
repeat this till all x∗ij ’s are distributed to the weights x′’s in this bipartite graph. We do this for
every bidder i.

Now by construction, the edge weights x′ in this bipartite graph respect the constraints of the
matching polytope, so we can readily apply Birkhoff-von Neumann theorem to get decomposition
into matchings, except that we want to make sure that the capacity constraint for any bidder is
not violated in the allocation.

Claim 1. In any matching in the constructed bipartite graph, if bidder i’s capacity is violated, then
removing at most one item from her allocation would restore her capacity constraint.

Proof. Suppose item jk is matched to the node Lik, for k = 1, · · · , ki. (If node Lik is not matched,
let jk be ⊥, a null item of capacity 0.) We show that

∑ki
k=2 cijk ≤ Bi.

Let us number the items to make the presentation easier. Suppose items 1, 2, · · · , `1 are con-
nected to Li1, and items `1, `1 + 1, . . . , `2 are connected to Li2, and so on. First, recall that, from
the construction,

∑ki
k=1

∑`k
j=`k−1

cijx
′
kj =

∑
j cijx

∗
ij ≤ Bi. Secondly, recall that, because the items

were ordered by their weights for bidder i, any item connected to the node Lik, including item jk,
has weight at most that of the item `k−1, the lightest item incident to the previous bidder node.
That is, cijk ≤ ci`k−1

. Then for all k < ki,
∑`k

j=`k−1
x′ikj = 1, and hence ci`k ≤

∑`k
j=`k−1

x′ikjcij .
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Combining all these conditions,

ki∑
k=2

cijk ≤
ki−1∑
k=1

ci`k−1
≤

ki−1∑
k=1

`k∑
j=`k−1

cijx
′
ikj
≤

∑
j

cijx
∗
ij ≤ Bi.

Given the claim, our final algorithm works as follows. Solve the linear program (GAP) to get a
fractional solution x∗. Construct the bipartite graph and decompose x∗ into a convex combination of
matchings in the graph. Draw a matching from the distribution defined by this convex combination.
With probability half, give each bidder i the item matched to the node Li1 in the matching (if Li1

is not matched, bidder i gets nothing in this case.) With the remaining probability half, give each
bidder i the items matched to the nodes Li2, · · · , Liki . As we have argued, all such allocations
respect the capacity constraints, and the expected social welfare is exactly half of the LP value
of x∗.

4 Budget Additive Valuations

Recall the budget additive valutions: a valuation v : 2M → R is budget additive if there is a
budget B and for every S ⊆ M , v(S) = min{

∑
j v({j}), B}. The social welfare maximization can

obviously be computed via a similar LP rounding approach, by replacing the capacities in (GAP)
by the values. In fact, since the LP becomes more special, the resulting LP has an integrality gap
of 4

3 . We known this is tight because of an algorithm given by Chakrabarty and Goel (2010) using
iterative rounding. It may be instructive to look at the integrality gap example:

Example 4 (Integrality gap). There are two bidders and three items. For i = 1, 2, vi(1) = vi(2) =
1, vi(3) = 2, Bi = 2. The optimal social welfare is 3, whereas the allocation vector x11 = x22 = 1,
x13 = x23 = 1

2 , whichsatisfies all the LP constraints, gives welfare 4.

However, we cannot turn the algorithm by Chakrabarty and Goel (or that by Shmoys and
Tardos) directly into an MIDR mechanism, because now the polytope depends on the values and
the budgets, which are private information possessed by the bidders.

Open question: Does there exist a polynomial time computable, truthful, O(1)-approximation
mechanism for budget additive valutions?
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