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This is a short note that summarizes the key steps of deriving Myerson’s mechanism, including
ironing, using revenue curves. For full details, the reader is referred to the textbook by Jason
Hartline.

1 Setting and Notations

We have a single item to sell, and each bidder i’s value vi is drawn independently from a knwon
distribution whose cumulative density function is Fi with derivative fi.

We denote by xi(vi, v−i) the allocation to bidder i when the bid/value profile is vi and v−i, and
pi(vi, v−i) the payment made by bidder i. We use xi(vi) to denote the interim allocation when
bidder i’s value is vi, i.e., xi(vi) = Ev−i [x]i(vi, v−i), and similarly for pi(vi).

2 Derivation

We derive Myerson (1981)’s optimal mechanism in six steps. Seeing (ironed) virtual values as the
derivatives of the (ironed) revenue curve comes from Bulow and Roberts (1989), although the actual
proof idea here comes from Alaei et al. (2013).

1. Characterization of Bayesian incentive compatible mechanisms. Every BIC mech-
anism has monotone allocation rule, i.e., xi(vi) is nondecreasing with vi. Moreover, the
expected payment is determined by the allocation rule: pi(vi) = vixi(vi)−

∫ vi
0 xi(s) ds.

Note: The characterzation is really more about IC than about BIC. For example, any DSIC
mechanism must have its allocation rule xi(vi, v−i) monotone in vi given any v−i, and the
payment pi(vi, v−i) is also determined as vixi(vi, v−i)−

∫ vi
0 xi(s, v−i) ds.

2. Decomposition into step functions. Any monotone allocation rule is the convex decom-
position of step functions. In other words, the function xi(vi) can be written as the weighted
sum of some step functions, and the weights are nonnegative and sum to 1. (In the continu-
ous case, we have an integral instead of a sum.) We would like to determine the weights or
density of these step functions in this decomposition. Let us try to determine the weight of
the step function that jumps from 0 to 1 at v. Intuitively, the value v’s allocation is x′i(v) dv
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more than the value that is slightly below it; this difference should be the probability that
this particular step function is used, and so the weight should be x′i(v) dv.

3. Calculating revenue using posted prices. By revenue equivalence (i.e., that payment is
determined by the allocation rule), to implement any monotone allocation rule, it is equivalent
to randomize over a set of allocation functions that are step functions, where the probability
of running the step function that jumps from 0 to 1 at value v is x′i(v)dv. Such a step function
is implemented by a posted price at v, and its expected revenue is v(1−Fi(v)). The expected
revenue of any allocation rule xi is therefore∫ ∞

0
[v(1− F (v))]x′i(v) dv. (1)

Note that the integral over v here is not with respect to the density fi. We can already do
an integral by part at this point, and using the fact that v(1− F (v)) evaluates to 0 at both
0 and ∞, this integral is equal to∫ ∞

0
x(v)[vfi(v)− (1− Fi(v))] dv =

∫ ∞
0

xi(v)

[
v − 1− Fi(v)

fi(v)

]
fi(v) dv.

The last step, extracting the factor fi(v) from the bracket, gives us the expression for virtual
surplus with respect to the virtual value. This is the expression in Myerson’s original proof.
Note that here, by having the density function as the measure, it is as if we are taking
expectation with respect to v drawn from its original distribution. This meaning was not
there in (1). This change of meaning in the integral variable is crucial, and it is one of the
motivations for us to move from the value space to quantile space.

4. Passing to the quantile space. As we have seen, the integral (1) is with respect to a
distribution of step functions (or posted prices), given by x′(v) dv, where the measure for v
itself is uniform. We could as well carry over to a uniform distribution on the compact domain
[0, 1] through the mapping ψi(v) = 1− Fi(v). ψi(v) is called the quantile of the value v. Let
yi : [0, 1] → [0, 1] be the quantile allocation function, that is, yi(q) = xi(ψ

−1
i (q)). In the

decomposition of the allocation rule, the step function jumping at v then has weight/density
−y′i(q) dq evaluated at q = ψi(v).1 Let Ri(q) = q · F−1i (1 − q) be the revenue of the step
function at (or, equivalently, the posted price of) v = ψ−1(q), the revenue (1) can be rewritten,
in terms of quantiles, as ∫ 1

0
Ri(q)(−y′i(q)) dq =

∫ 1

0
R′i(q)yi(q) dq, (2)

where the equality again follows by integral by part. Ri(q) is called the revenue curve.

Definition 1. A distribution Fi is said to be regular if its regular curve is concave.

Remark: Passing to the quantile space may seem strange at first. One of the advantages of
this switch is that it facilitates a perspective change. Instead of thinking about v(1− F (v)),

1As a sanity check, −y′i(q) = −dxi(ψi(v))
dv

· dv
dψi(v)

∣∣∣∣
v=ψ−1

i (q)

= x′i(ψ
−1
i (q)), agreeing with our calculation before.
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the revenue of a certain posted price, R(q) suggests the revenue of a selling strategy that
sells with ex ante probability q: setting a price at ψ−1i (q) is only one of such strategies. This
perspective immediately leads to a more general definition of revenue curve and ironing itself.

5. Generalization of revenue curves and Ironing. Let R̃i(q) be the optimal revenue ex-
tractable from bidder i with an incentive compatible mechanism that sells with ex ante prob-
ability q. Then obviously R̃i(q) ≥ Ri(q) for any q ∈ [0, 1]. Furthermore, by step 2, any IC
mechanism itself can be implemented by a distribution over posted prices. Therefore R̃i(q) is
simply the concave hull of Ri(q).
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Note: For any q where R̃i(q) > Ri(q), the revenue of the posted price ψ−1i (q) is less than
the revenue of a distribution over two other posted prices, whose expected ex ante selling
probability is just q.

Now, the revenue of any BIC mechanism from bidder i is∫ 1

0
R′i(q)yi(q) dq =

∫ 1

0
Ri(q)(−y′i(q)) dq ≤

∫ 1

0
R̃i(q)(−y′i(q)) dq =

∫ 1

0
R̃′i(q)yi(q) dq. (3)

6. The optimal mechanism. The optimal mechanism maximizes its revenue with respect to
the RHS of (3), and in fact achieves it. By the inequality in (3), such a mechanism maximizes
the revenue as well, with equality therein attained.

Recall that yi(q) is the allocation of bidder i when her value is v = ψ−1i (q). Therefore, in order

to maximize
∫ 1
0 R̃

′
i(q)yi(q) dq, the optimal mechanism solicits bids v1, . . . , vn, and maps them

to quantiles ψ1(v1), . . . , ψn(vn), then observes the corresponding R̃′1(ψ1(v1)), · · · , R̃′n(ψn(vn)).
If the maximum among these is above zero, then allocate the item to this bidder; otherwise,
do not sell.

Remark: The quantity R̃′i(q) is the ironed virtual value of bidder i’s type that has quantile q.
It is “ironed” because in any region (q1, q2) where R̃i is strictly greater than Ri, R̃i is a straight
line and has all types in that region have the same ironed virtual value, and therefore, in the
optimal mechanism, they are all treated the same. Equivalently, any posted price whose
selling probability lies in (q1, q2) is used with probability 0 in the optimal mechanism. In
other words, the allocation rule is flat on (q1, q2). This is also necessary for the equality in
(3) to be attained.
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2Equivalently, the region enclosed by R̃i(q) with the q-axis is the convex hull of that enclosed by Ri(q) and the
q-axis.
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