## Learning Goals

- Definition of a Treap and its motivating ideas
- Definition of a Heap
- Implementation of Treap insertion
- Analysis of the expected performance of a Treap


## Treap: Motivating Ideas

- A binary search tree's shape depends on the arrival order of the nodes.


## Treap: Motivating Ideas

- A binary search tree's shape depends on the arrival order of the nodes.
- If the nodes $1,2, \ldots, n$ arrive in this increasing order and are added with the naïve BST Insert, the resulting tree will be a linked list.


## Treap: Motivating Ideas

- A binary search tree's shape depends on the arrival order of the nodes.
- If the nodes $1,2, \ldots, n$ arrive in this increasing order and are added with the naïve BST Insert, the resulting tree will be a linked list.
- Intuitively, for less adversarial arrival orders, the tree should be somewhat balanced.
- In fact, it can be shown that, if the nodes arrive in a uniformly random order, the expected height of the resulting BST is $O(\log n)$.


## Proof Sketch for Randomly Built BST

- Rough idea: it is natural to formulate the problem as a recursion, and let $h_{n}$ be the random variable for the height of the BST formed by $n$ nodes when they arrive in a random order.


## Proof Sketch for Randomly Built BST

- Rough idea: it is natural to formulate the problem as a recursion, and let $h_{n}$ be the random variable for the height of the BST formed by $n$ nodes when they arrive in a random order.
- If the first node (the root) is the $i$-th largest, then the height of the resulting tree is $1+\max \left\{h_{i-1}, h_{n-i}\right\}$.


## Proof Sketch for Randomly Built BST

- Rough idea: it is natural to formulate the problem as a recursion, and let $h_{n}$ be the random variable for the height of the BST formed by $n$ nodes when they arrive in a random order.
- If the first node (the root) is the $i$-th largest, then the height of the resulting tree is $1+\max \left\{h_{i-1}, h_{n-i}\right\}$.
- When we take the expectation of $\max \left\{h_{i-1}, h_{n-i}\right\}, \mathbf{E}[\cdot]$ cannot be moved into $\max \{\cdot\}$.


## Proof Sketch for Randomly Built BST

- Rough idea: it is natural to formulate the problem as a recursion, and let $h_{n}$ be the random variable for the height of the BST formed by $n$ nodes when they arrive in a random order.
- If the first node (the root) is the $i$-th largest, then the height of the resulting tree is $1+\max \left\{h_{i-1}, h_{n-i}\right\}$.
- When we take the expectation of $\max \left\{h_{i-1}, h_{n-i}\right\}, \mathrm{E}[\cdot]$ cannot be moved into $\max \{\cdot\}$.
- In fact, $\mathbf{E}\left[\max \left\{X_{1}, X_{2}\right\}\right] \geq \max \left\{\mathbf{E}\left[X_{1}\right], \mathbf{E}\left[X_{2}\right]\right\}$, a consequence of Jensen's inequality: $\mathbf{E}_{X}[f(X)] \geq f\left(\mathbf{E}_{X}[X]\right)$ for convex $f$.
- A common trick to deal with this is to say $\mathbf{E}\left[\max \left\{h_{i-1}, h_{n-i}\right\}\right] \leq \mathbf{E}\left[h_{i-1}+h_{n-i}\right]=\mathbf{E}\left[h_{i}\right]+\mathbf{E}\left[h_{n-i}\right]$.


## Proof Sketch for Randomly Built BST

- Rough idea: it is natural to formulate the problem as a recursion, and let $h_{n}$ be the random variable for the height of the BST formed by $n$ nodes when they arrive in a random order.
- If the first node (the root) is the $i$-th largest, then the height of the resulting tree is $1+\max \left\{h_{i-1}, h_{n-i}\right\}$.
- When we take the expectation of $\max \left\{h_{i-1}, h_{n-i}\right\}, \mathbf{E}[\cdot]$ cannot be moved into $\max \{\cdot\}$.
- In fact, $\mathbf{E}\left[\max \left\{X_{1}, X_{2}\right\}\right] \geq \max \left\{\mathbf{E}\left[X_{1}\right], \mathbf{E}\left[X_{2}\right]\right\}$, a consequence of Jensen's inequality: $\mathbf{E}_{X}[f(X)] \geq f\left(\mathbf{E}_{X}[X]\right)$ for convex $f$.
- A common trick to deal with this is to say $\mathbf{E}\left[\max \left\{h_{i-1}, h_{n-i}\right\}\right] \leq \mathbf{E}\left[h_{i-1}+h_{n-i}\right]=\mathbf{E}\left[h_{i}\right]+\mathbf{E}\left[h_{n-i}\right]$.
- But here such a bound would be too loose.


## Proof Sketch for Randomly Built BST

- Rough idea: it is natural to formulate the problem as a recursion, and let $h_{n}$ be the random variable for the height of the BST formed by $n$ nodes when they arrive in a random order.
- If the first node (the root) is the $i$-th largest, then the height of the resulting tree is $1+\max \left\{h_{i-1}, h_{n-i}\right\}$.
- When we take the expectation of $\max \left\{h_{i-1}, h_{n-i}\right\}, \mathbf{E}[\cdot]$ cannot be moved into $\max \{\cdot\}$.
- In fact, $\mathbf{E}\left[\max \left\{X_{1}, X_{2}\right\}\right] \geq \max \left\{\mathbf{E}\left[X_{1}\right], \mathbf{E}\left[X_{2}\right]\right\}$, a consequence of Jensen's inequality: $\mathbf{E}_{X}[f(X)] \geq f\left(\mathbf{E}_{X}[X]\right)$ for convex $f$.
- A common trick to deal with this is to say $\mathbf{E}\left[\max \left\{h_{i-1}, h_{n-i}\right\}\right] \leq \mathbf{E}\left[h_{i-1}+h_{n-i}\right]=\mathbf{E}\left[h_{i}\right]+\mathbf{E}\left[h_{n-i}\right]$.
- But here such a bound would be too loose.
- If we expect $h_{i}$ and $h_{n-i}$ differ not much, then we'd lose a factor of 2 each time we apply this.


## Proof Sketch for Randomly Built BST (Cont.)

- Another clever idea: we can amplify the quantity we are interested in, so that the estimation error caused by $\mathbf{E}\left[\max \left\{h_{i-1}, h_{n-i}\right\}\right] \leq \mathbf{E}\left[h_{i-1}\right]+\mathbf{E}\left[h_{n-i}\right]$ is more negligible.


## Proof Sketch for Randomly Built BST (Cont.)

- Another clever idea: we can amplify the quantity we are interested in, so that the estimation error caused by $\mathbf{E}\left[\max \left\{h_{i-1}, h_{n-i}\right\}\right] \leq \mathbf{E}\left[h_{i-1}\right]+\mathbf{E}\left[h_{n-i}\right]$ is more negligible.
- Let $H_{n}$ be $2^{h_{n}}$.


## Proof Sketch for Randomly Built BST (Cont.)

- Another clever idea: we can amplify the quantity we are interested in, so that the estimation error caused by $\mathbf{E}\left[\max \left\{h_{i-1}, h_{n-i}\right\}\right] \leq \mathbf{E}\left[h_{i-1}\right]+\mathbf{E}\left[h_{n-i}\right]$ is more negligible.
- Let $H_{n}$ be $2^{h_{n}}$.
- Then $H_{n}=\frac{1}{n} \sum_{i=1}^{n} 2 \cdot \max \left\{H_{i-1}, H_{n-i}\right\}$.


## Proof Sketch for Randomly Built BST (Cont.)

- Another clever idea: we can amplify the quantity we are interested in, so that the estimation error caused by $\mathbf{E}\left[\max \left\{h_{i-1}, h_{n-i}\right\}\right] \leq \mathbf{E}\left[h_{i-1}\right]+\mathbf{E}\left[h_{n-i}\right]$ is more negligible.
- Let $H_{n}$ be $2^{h_{n}}$.
- Then $H_{n}=\frac{1}{n} \sum_{i=1}^{n} 2 \cdot \max \left\{H_{i-1}, H_{n-i}\right\}$.

$$
\mathbf{E}\left[H_{n}\right] \leq \frac{2}{n} \sum_{i=1}^{n} \mathbf{E}\left[H_{i-1}\right]+\mathbf{E}\left[H_{n-i}\right]=\frac{4}{n} \sum_{i=1}^{n-1} \mathbf{E}\left[H_{i}\right] .
$$

## Proof Sketch for Randomly Built BST (Cont.)

- Another clever idea: we can amplify the quantity we are interested in, so that the estimation error caused by
$\mathbf{E}\left[\max \left\{h_{i-1}, h_{n-i}\right\}\right] \leq \mathbf{E}\left[h_{i-1}\right]+\mathbf{E}\left[h_{n-i}\right]$ is more negligible.
- Let $H_{n}$ be $2^{h_{n}}$.
- Then $H_{n}=\frac{1}{n} \sum_{i=1}^{n} 2 \cdot \max \left\{H_{i-1}, H_{n-i}\right\}$.

$$
\mathbf{E}\left[H_{n}\right] \leq \frac{2}{n} \sum_{i=1}^{n} \mathbf{E}\left[H_{i-1}\right]+\mathbf{E}\left[H_{n-i}\right]=\frac{4}{n} \sum_{i=1}^{n-1} \mathbf{E}\left[H_{i}\right]
$$

- This is a tractable recursion, and one can show that $\mathbf{E}\left[H_{n}\right]$ is polynomial in $n$. Therefore $\mathbf{E}\left[h_{n}\right]$ is $O(\log n)$.


## Proof Sketch for Randomly Built BST (Cont.)

- Another clever idea: we can amplify the quantity we are interested in, so that the estimation error caused by
$\mathbf{E}\left[\max \left\{h_{i-1}, h_{n-i}\right\}\right] \leq \mathbf{E}\left[h_{i-1}\right]+\mathbf{E}\left[h_{n-i}\right]$ is more negligible.
- Let $H_{n}$ be $2^{h_{n}}$.
- Then $H_{n}=\frac{1}{n} \sum_{i=1}^{n} 2 \cdot \max \left\{H_{i-1}, H_{n-i}\right\}$.

$$
\mathbf{E}\left[H_{n}\right] \leq \frac{2}{n} \sum_{i=1}^{n} \mathbf{E}\left[H_{i-1}\right]+\mathbf{E}\left[H_{n-i}\right]=\frac{4}{n} \sum_{i=1}^{n-1} \mathbf{E}\left[H_{i}\right]
$$

- This is a tractable recursion, and one can show that $\mathbf{E}\left[H_{n}\right]$ is polynomial in $n$. Therefore $\mathbf{E}\left[h_{n}\right]$ is $O(\log n)$.
- The latter is another consequence of Jensen's inequality:

$$
2^{\mathbf{E}\left[h_{n}\right]} \leq \mathbf{E}\left[2^{h_{n}}\right]=\mathbf{E}\left[H_{n}\right]=O\left(n^{c}\right)
$$

## Back to Reality..

- However, we cannot assume the nodes arrive in uniformly random order.


## Back to Reality..

- However, we cannot assume the nodes arrive in uniformly random order.
- Idea: we sample a uniformly random arrival order $\pi$ for the nodes, then when an node arrives, we insist on treating it as if its position in the arrival order is the one in $\pi$ and not the one actually observed.


## Back to Reality..

- However, we cannot assume the nodes arrive in uniformly random order.
- Idea: we sample a uniformly random arrival order $\pi$ for the nodes, then when an node arrives, we insist on treating it as if its position in the arrival order is the one in $\pi$ and not the one actually observed.
- For example, if node $i$ arrives first according to $\pi$, then we make $i$ the root of the tree upon its arrival, even if it arrives late.


## Back to Reality..

- However, we cannot assume the nodes arrive in uniformly random order.
- Idea: we sample a uniformly random arrival order $\pi$ for the nodes, then when an node arrives, we insist on treating it as if its position in the arrival order is the one in $\pi$ and not the one actually observed.
- For example, if node $i$ arrives first according to $\pi$, then we make $i$ the root of the tree upon its arrival, even if it arrives late.
- This does not require knowing the set of nodes before they arrive.


## Back to Reality..

- However, we cannot assume the nodes arrive in uniformly random order.
- Idea: we sample a uniformly random arrival order $\pi$ for the nodes, then when an node arrives, we insist on treating it as if its position in the arrival order is the one in $\pi$ and not the one actually observed.
- For example, if node $i$ arrives first according to $\pi$, then we make $i$ the root of the tree upon its arrival, even if it arrives late.
- This does not require knowing the set of nodes before they arrive.
- When a node arrives, we just sample its position in $\pi$ by choosing uniformly at randm its position w.r.t. the node that have arrived.


## Back to Reality..

- However, we cannot assume the nodes arrive in uniformly random order.
- Idea: we sample a uniformly random arrival order $\pi$ for the nodes, then when an node arrives, we insist on treating it as if its position in the arrival order is the one in $\pi$ and not the one actually observed.
- For example, if node $i$ arrives first according to $\pi$, then we make $i$ the root of the tree upon its arrival, even if it arrives late.
- This does not require knowing the set of nodes before they arrive.
- When a node arrives, we just sample its position in $\pi$ by choosing uniformly at randm its position w.r.t. the node that have arrived.
- If we write $\pi(i)$ on node $i$ to denote its position in our hypothetical ordering $\pi$, then the node with the smallest $\pi(\cdot)$ should be the root.


## Back to Reality..

- However, we cannot assume the nodes arrive in uniformly random order.
- Idea: we sample a uniformly random arrival order $\pi$ for the nodes, then when an node arrives, we insist on treating it as if its position in the arrival order is the one in $\pi$ and not the one actually observed.
- For example, if node $i$ arrives first according to $\pi$, then we make $i$ the root of the tree upon its arrival, even if it arrives late.
- This does not require knowing the set of nodes before they arrive.
- When a node arrives, we just sample its position in $\pi$ by choosing uniformly at randm its position w.r.t. the node that have arrived.
- If we write $\pi(i)$ on node $i$ to denote its position in our hypothetical ordering $\pi$, then the node with the smallest $\pi(\cdot)$ should be the root.
- The same is true for each of the subtrees.


## Back to Reality..

- However, we cannot assume the nodes arrive in uniformly random order.
- Idea: we sample a uniformly random arrival order $\pi$ for the nodes, then when an node arrives, we insist on treating it as if its position in the arrival order is the one in $\pi$ and not the one actually observed.
- For example, if node $i$ arrives first according to $\pi$, then we make $i$ the root of the tree upon its arrival, even if it arrives late.
- This does not require knowing the set of nodes before they arrive.
- When a node arrives, we just sample its position in $\pi$ by choosing uniformly at randm its position w.r.t. the node that have arrived.
- If we write $\pi(i)$ on node $i$ to denote its position in our hypothetical ordering $\pi$, then the node with the smallest $\pi(\cdot)$ should be the root.
- The same is true for each of the subtrees.
- The resulting tree has the property that, for any two nodes $x$ and $y$, if $x$ is an ancestor of $y$, then $\pi(x)<\pi(y)$.


## Heaps

- A heap is a tree that satisfies the heap property: for any two nodes $x$ and $y$, if $y$ is a child of $x$, then $\operatorname{key}(x) \leq \operatorname{key}(y)$.


## Heaps

- A heap is a tree that satisfies the heap property: for any two nodes $x$ and $y$, if $y$ is a child of $x$, then $\operatorname{key}(x) \leq \operatorname{key}(y)$.
- It supports the operation of Extract-Max.


## Heaps

- A heap is a tree that satisfies the heap property: for any two nodes $x$ and $y$, if $y$ is a child of $x$, then $\operatorname{key}(x) \leq \operatorname{key}(y)$.
- It supports the operation of Extract-Max.
- The algorithm HeapSort uses this for sorting.


## Heaps

- A heap is a tree that satisfies the heap property: for any two nodes $x$ and $y$, if $y$ is a child of $x$, then $\operatorname{key}(x) \leq \operatorname{key}(y)$.
- It supports the operation of Ехтваст-Max.
- The algorithm HeapSort uses this for sorting.
- Some graph algorithms use this, e.g. Dijkstra's algorithm for shortest path in graphs with nonnegative weights.


## Heaps

- A heap is a tree that satisfies the heap property: for any two nodes $x$ and $y$, if $y$ is a child of $x$, then $\operatorname{key}(x) \leq \operatorname{key}(y)$.
- It supports the operation of Extract-Max.
- The algorithm HeapSort uses this for sorting.
- Some graph algorithms use this, e.g. Dijkstra's algorithm for shortest path in graphs with nonnegative weights.
- Insert $(x)$ : insert the new node as a leaf; this may violate the heap property - let it "swim" up the tree by swapping it with the parent as long as the heap property is still violated.


## Heaps

- A heap is a tree that satisfies the heap property: for any two nodes $x$ and $y$, if $y$ is a child of $x$, then $\operatorname{key}(x) \leq \operatorname{key}(y)$.
- It supports the operation of Extract-Max.
- The algorithm HeapSort uses this for sorting.
- Some graph algorithms use this, e.g. Dijkstra's algorithm for shortest path in graphs with nonnegative weights.
- Insert $(x)$ : insert the new node as a leaf; this may violate the heap property - let it "swim" up the tree by swapping it with the parent as long as the heap property is still violated.
- Side remark: It is often useful to implement a heap in an array. One need not keep pointers for parents or children.


## Heap: An Illustration



## Treap

- Idea to simulate random arrival order in building a BST: in addition to the key values, give each node $x$ a random priority value $\pi(x) \in[n]:=\{1, \ldots, n\}$.


## Treap

- Idea to simulate random arrival order in building a BST: in addition to the key values, give each node $x$ a random priority value $\pi(x) \in[n]:=\{1, \ldots, n\}$.
- Maintain the BST property on the key values, and maintain the heap property on the priority values.


## Treap

- Idea to simulate random arrival order in building a BST: in addition to the key values, give each node $x$ a random priority value $\pi(x) \in[n]:=\{1, \ldots, n\}$.
- Maintain the BST property on the key values, and maintain the heap property on the priority values.
- The resulting data structure is a Treap.


## Treap

- Idea to simulate random arrival order in building a BST: in addition to the key values, give each node $x$ a random priority value $\pi(x) \in[n]:=\{1, \ldots, n\}$.
- Maintain the BST property on the key values, and maintain the heap property on the priority values.
- The resulting data structure is a Treap.
- Operation $\operatorname{Find}(x)$ is the same as in BST.


## Treap

- Idea to simulate random arrival order in building a BST: in addition to the key values, give each node $x$ a random priority value $\pi(x) \in[n]:=\{1, \ldots, n\}$.
- Maintain the BST property on the key values, and maintain the heap property on the priority values.
- The resulting data structure is a Treap.
- Operation $\operatorname{Find}(x)$ is the same as in BST.
- Operation $\operatorname{Insert}(x, r)$ first does the BST insertion using key values, and then assigns a uniformly random priority value to the new node and lets it swim (using tree rotations!) to restore the heap property on the priority values.


## Treap: An Illustration



## Analysis

- The proof that a BST for $n$ randomly arriving nodes has expected height $O(\log n)$ in fact already implies Find and Insert both take $O(\log n)$ time in expectation.


## Analysis

- The proof that a BST for $n$ randomly arriving nodes has expected height $O(\log n)$ in fact already implies Find and Insert both take $O(\log n)$ time in expectation.
- For InSERT, the number of "swim" steps is bounded by the height of the tree, which is again $O(\log n)$ in expectation.


## Analysis

- The proof that a BST for $n$ randomly arriving nodes has expected height $O(\log n)$ in fact already implies Find and Insert both take $O(\log n)$ time in expectation.
- For Insert, the number of "swim" steps is bounded by the height of the tree, which is again $O(\log n)$ in expectation.
- An alternative analysis of $\operatorname{lnsert}(x)$ : it suffices to show that the ordinary tree insertion puts $x$ at a leaf of depth $O(\log n)$.


## Analysis

- The proof that a BST for $n$ randomly arriving nodes has expected height $O(\log n)$ in fact already implies Find and Insert both take $O(\log n)$ time in expectation.
- For Insert, the number of "swim" steps is bounded by the height of the tree, which is again $O(\log n)$ in expectation.
- An alternative analysis of $\operatorname{lnsert}(x)$ : it suffices to show that the ordinary tree insertion puts $x$ at a leaf of depth $O(\log n)$.
- Walking down the path from the root to the leaf that is $x$ : $v_{1}=r, v_{2}, \ldots, v_{h}=x$, let's look at the size of the shrinking subtree rooted at each $v_{i}$.


## Analysis

- The proof that a BST for $n$ randomly arriving nodes has expected height $O(\log n)$ in fact already implies Find and Insert both take $O(\log n)$ time in expectation.
- For Insert, the number of "swim" steps is bounded by the height of the tree, which is again $O(\log n)$ in expectation.
- An alternative analysis of $\operatorname{lnsert}(x)$ : it suffices to show that the ordinary tree insertion puts $x$ at a leaf of depth $O(\log n)$.
- Walking down the path from the root to the leaf that is $x$ : $v_{1}=r, v_{2}, \ldots, v_{h}=x$, let's look at the size of the shrinking subtree rooted at each $v_{i}$.
- Start with the root, the size of the (sub)tree is $n$.


## Analysis

- The proof that a BST for $n$ randomly arriving nodes has expected height $O(\log n)$ in fact already implies Find and Insert both take $O(\log n)$ time in expectation.
- For Insert, the number of "swim" steps is bounded by the height of the tree, which is again $O(\log n)$ in expectation.
- An alternative analysis of $\operatorname{Insert}(x)$ : it suffices to show that the ordinary tree insertion puts $x$ at a leaf of depth $O(\log n)$.
- Walking down the path from the root to the leaf that is $x$ : $v_{1}=r, v_{2}, \ldots, v_{h}=x$, let's look at the size of the shrinking subtree rooted at each $v_{i}$.
- Start with the root, the size of the (sub)tree is $n$.
- One step down to node $v_{2}$. Wlog let's say $v_{2}$ is the left child of $v_{1}$.


## Analysis

- The proof that a BST for $n$ randomly arriving nodes has expected height $O(\log n)$ in fact already implies Find and Insert both take $O(\log n)$ time in expectation.
- For Insert, the number of "swim" steps is bounded by the height of the tree, which is again $O(\log n)$ in expectation.
- An alternative analysis of $\operatorname{Insert}(x)$ : it suffices to show that the ordinary tree insertion puts $x$ at a leaf of depth $O(\log n)$.
- Walking down the path from the root to the leaf that is $x$ : $v_{1}=r, v_{2}, \ldots, v_{h}=x$, let's look at the size of the shrinking subtree rooted at each $v_{i}$.
- Start with the root, the size of the (sub)tree is $n$.
- One step down to node $v_{2}$. Wlog let's say $v_{2}$ is the left child of $v_{1}$.
- With probability $\frac{3}{4}$, the size of the subtree shrinks by a factor of $\frac{3}{4}$ when we go from $v_{0}=r$ to $v_{1}$.


## Analysis

- The proof that a BST for $n$ randomly arriving nodes has expected height $O(\log n)$ in fact already implies Find and Insert both take $O(\log n)$ time in expectation.
- For InSert, the number of "swim" steps is bounded by the height of the tree, which is again $O(\log n)$ in expectation.
- An alternative analysis of $\operatorname{Insert}(x)$ : it suffices to show that the ordinary tree insertion puts $x$ at a leaf of depth $O(\log n)$.
- Walking down the path from the root to the leaf that is $x$ : $v_{1}=r, v_{2}, \ldots, v_{h}=x$, let's look at the size of the shrinking subtree rooted at each $v_{i}$.
- Start with the root, the size of the (sub)tree is $n$.
- One step down to node $v_{2}$. Wlog let's say $v_{2}$ is the left child of $v_{1}$.
- With probability $\frac{3}{4}$, the size of the subtree shrinks by a factor of $\frac{3}{4}$ when we go from $v_{0}=r$ to $v_{1}$.
- The same reasoning applies at every step down the path.


## Analysis of Insert Cont.

- Let's say a step down the path is successful if the size of the subtree shrinks by a factor of $\frac{3}{4}$.


## Analysis of Insert Cont.

- Let's say a step down the path is successful if the size of the subtree shrinks by a factor of $\frac{3}{4}$.
- We can have at most $\log _{\frac{4}{3}} n$ successful steps before the subtree becomes a singleton.


## Analysis of Insert Cont.

- Let's say a step down the path is successful if the size of the subtree shrinks by a factor of $\frac{3}{4}$.
- We can have at most $\log _{\frac{4}{3}} n$ successful steps before the subtree becomes a singleton.
- This is very similar to the analysis of Quicksort.


## Analysis of Insert Cont.

- Let's say a step down the path is successful if the size of the subtree shrinks by a factor of $\frac{3}{4}$.
- We can have at most $\log _{\frac{4}{3}} n$ successful steps before the subtree becomes a singleton.
- This is very similar to the analysis of Quicksort.
- An application of Chernoff bound shows that w.h.p. Insert takes $O(\log n)$ time.


## Analysis of Insert Cont.

- Let's say a step down the path is successful if the size of the subtree shrinks by a factor of $\frac{3}{4}$.
- We can have at most $\log _{\frac{4}{3}} n$ successful steps before the subtree becomes a singleton.
- This is very similar to the analysis of Quicksort.
- An application of Chernoff bound shows that w.h.p. Insert takes $O(\log n)$ time.
- In fact, another use of union bound shows that, w.h.p. the height of the Treap is $O(\log n)$.

