Learning Goals

- Understand the design idea of skip lists
- Carry out more involved probabilistic runtime analysis using Chernoff bound and union bound
- Understand the idea of SkipNet in Peer-to-Peer systems

Skip List

- Problem with storing ordered data with linked list: Find takes $O(n)$ time.

Skip List

- Problem with storing ordered data with linked list: Find takes $O(n)$ time.
- Imagine building faster links among the nodes:
- At the bottom level L_{0}, we have the original linked list, sorted;

Skip List

- Problem with storing ordered data with linked list: Find takes $O(n)$ time.
- Imagine building faster links among the nodes:
- At the bottom level L_{0}, we have the original linked list, sorted;
- One level above, at L_{1}, we have a linked list storing every other node, also sorted, with $\lfloor n / 2\rfloor$ nodes;

Skip List

- Problem with storing ordered data with linked list: Find takes $O(n)$ time.
- Imagine building faster links among the nodes:
- At the bottom level L_{0}, we have the original linked list, sorted;
- One level above, at L_{1}, we have a linked list storing every other node, also sorted, with $\lfloor n / 2\rfloor$ nodes;
- One level above, at L_{2}, we have a linked list storing every four node from L_{0}, or every other node from L_{1}, also sorted, with $\lfloor n / 4\rfloor$ nodes, etc..
- Each copy of the node in L_{i} stores pointers to its copies in L_{i-1} and L_{i+1} (if they exist), and also the nodes the precede and follow it in L_{i}.

Skip List: Illustration

Image credit: Mike Lam at James Madison University

Find in Skip List

- Now Find takes time $O(\log n)$.
- The highest level is L_{H}, where $H=\lceil\log n\rceil$.

Find in Skip List

- Now Find takes time $O(\log n)$.
- The highest level is L_{H}, where $H=\lceil\log n\rceil$.
- To find a key x, first walk in L_{H} as far as we can, finding the largest node whose key is still less than x;

Find in Skip List

- Now Find takes time $O(\log n)$.
- The highest level is L_{H}, where $H=\lceil\log n\rceil$.
- To find a key x, first walk in L_{H} as far as we can, finding the largest node whose key is still less than x;
- Then walk down one level from that copy,and continue walking till we find again the node in level L_{H-1} with the largest key that is still smaller than x;

Find in Skip List

- Now Find takes time $O(\log n)$.
- The highest level is L_{H}, where $H=\lceil\log n\rceil$.
- To find a key x, first walk in L_{H} as far as we can, finding the largest node whose key is still less than x;
- Then walk down one level from that copy, and continue walking till we find again the node in level L_{H-1} with the largest key that is still smaller than x;
- Repeat, until we reach the node with x in level L_{0}.
- In actual implementation, we may store only the keys in levels other than L_{0}, and store the actual content only in nodes of L_{0}.

Find in Skip List

- Now Find takes time $O(\log n)$.
- The highest level is L_{H}, where $H=\lceil\log n\rceil$.
- To find a key x, first walk in L_{H} as far as we can, finding the largest node whose key is still less than x;
- Then walk down one level from that copy, and continue walking till we find again the node in level L_{H-1} with the largest key that is still smaller than x;
- Repeat, until we reach the node with x in level L_{0}.
- In actual implementation, we may store only the keys in levels other than L_{0}, and store the actual content only in nodes of L_{0}.
- Problem: Insert and Delete are combersome.

Skip List with Randomization

- Idea: Use randomization to construct the upper levels.

Skip List with Randomization

- Idea: Use randomization to construct the upper levels.
- When we insert a new node, after we find its position in L_{0} and inserting it there, we toss a coin, and with probability $\frac{1}{2}$ insert a copy in L_{1}, otherwise stop;

Skip List with Randomization

- Idea: Use randomization to construct the upper levels.
- When we insert a new node, after we find its position in L_{0} and inserting it there, we toss a coin, and with probability $\frac{1}{2}$ insert a copy in L_{1}, otherwise stop;
- If we made a copy in L_{1}, then toss another coin, insert with probability $\frac{1}{2}$ a copy to level L_{2}, etc.

Skip List with Randomization

- Idea: Use randomization to construct the upper levels.
- When we insert a new node, after we find its position in L_{0} and inserting it there, we toss a coin, and with probability $\frac{1}{2}$ insert a copy in L_{1}, otherwise stop;
- If we made a copy in L_{1}, then toss another coin, insert with probability $\frac{1}{2}$ a copy to level L_{2}, etc.
- The expected number of copies we insert for each node is 2 .

Skip List with Randomization

- Idea: Use randomization to construct the upper levels.
- When we insert a new node, after we find its position in L_{0} and inserting it there, we toss a coin, and with probability $\frac{1}{2}$ insert a copy in L_{1}, otherwise stop;
- If we made a copy in L_{1}, then toss another coin, insert with probability $\frac{1}{2}$ a copy to level L_{2}, etc.
- The expected number of copies we insert for each node is 2 .
- We just need to show that this randomized construction yields similar performance for FIND as the previous deterministic structure.

Randomized Skip List: ILlustration

Analysis of Find on Skip List

- There are two reasons that a Find can take long: there can be too many layers, and the find takes too many horizontal steps.
- Let's first bound the number of levels H.

Analysis of Find on Skip List

- There are two reasons that a Find can take long: there can be too many layers, and the find takes too many horizontal steps.
- Let's first bound the number of levels H.
- The probability that a particular node has a copy at a level at least as high as H is 2^{-H}.

Analysis of Find on Skip List

- There are two reasons that a Find can take long: there can be too many layers, and the find takes too many horizontal steps.
- Let's first bound the number of levels H.
- The probability that a particular node has a copy at a level at least as high as H is 2^{-H}.
- By the union bound, when $n 2^{-H} \leq \frac{1}{n^{2}}$, i.e., $H \geq 3 \log n$, with probability no more than $\frac{1}{n^{2}}$, there are no more than H levels.

Analysis of Find on Skip List

- There are two reasons that a Find can take long: there can be too many layers, and the find takes too many horizontal steps.
- Let's first bound the number of levels H.
- The probability that a particular node has a copy at a level at least as high as H is 2^{-H}.
- By the union bound, when $n 2^{-H} \leq \frac{1}{n^{2}}$, i.e., $H \geq 3 \log n$, with probability no more than $\frac{1}{n^{2}}$, there are no more than H levels.

Bounding the number of horizontal steps

- For a fixed node x, we try to bound the number of steps it takes to reach x via a search path from the top level.

Bounding the number of horizontal steps

- For a fixed node x, we try to bound the number of steps it takes to reach x via a search path from the top level.
- It is easier to think of the path from node x up to the top level.

Bounding the number of horizontal steps

- For a fixed node x, we try to bound the number of steps it takes to reach x via a search path from the top level.
- It is easier to think of the path from node x up to the top level.
- At every step, we go either left or up

Bounding the number of horizontal steps

- For a fixed node x, we try to bound the number of steps it takes to reach x via a search path from the top level.
- It is easier to think of the path from node x up to the top level.
- At every step, we go either left or up
- If the current node has a copy in the level above, we step up: this happens with probability $\frac{1}{2}$;

Bounding the number of horizontal steps

- For a fixed node x, we try to bound the number of steps it takes to reach x via a search path from the top level.
- It is easier to think of the path from node x up to the top level.
- At every step, we go either left or up
- If the current node has a copy in the level above, we step up: this happens with probability $\frac{1}{2}$;
- Otherwise, we step left.

Bounding the number of horizontal steps

- For a fixed node x, we try to bound the number of steps it takes to reach x via a search path from the top level.
- It is easier to think of the path from node x up to the top level.
- At every step, we go either left or up
- If the current node has a copy in the level above, we step up: this happens with probability $\frac{1}{2}$;
- Otherwise, we step left.
- Once we reach level H, we declare success.

Bounding the number of horizontal steps

- For a fixed node x, we try to bound the number of steps it takes to reach x via a search path from the top level.
- It is easier to think of the path from node x up to the top level.
- At every step, we go either left or up
- If the current node has a copy in the level above, we step up: this happens with probability $\frac{1}{2}$;
- Otherwise, we step left.
- Once we reach level H, we declare success.
- The problem becomes: what's the probability that, after taking at least X steps, we haven't made H upward steps?

Bounding the number of horizontal steps

- For a fixed node x, we try to bound the number of steps it takes to reach x via a search path from the top level.
- It is easier to think of the path from node x up to the top level.
- At every step, we go either left or up
- If the current node has a copy in the level above, we step up: this happens with probability $\frac{1}{2}$;
- Otherwise, we step left.
- Once we reach level H, we declare success.
- The problem becomes: what's the probability that, after taking at least X steps, we haven't made H upward steps?

Apply Chernoff Bound

Take X to be, say, $36 \log n$, and let $Y_{i}, i=1, \cdots, X$, be the indicator variable that the i-th step is upward. Then $\mathbf{E}\left[Y_{i}\right]=\frac{1}{2}$. Let Y be $\sum_{i} Y_{i}$.

Apply Chernoff Bound

Take X to be, say, $36 \log n$, and let $Y_{i}, i=1, \cdots, X$, be the indicator variable that the i-th step is upward. Then $\mathbf{E}\left[Y_{i}\right]=\frac{1}{2}$. Let Y be $\sum_{i} Y_{i}$. By Chernoff bound,

$$
\begin{aligned}
\operatorname{Pr}[Y \leq 3 \log n] & =\operatorname{Pr}[Y \leq \mathbf{E}[Y]-15 \log n] \\
& \leq \exp \left(-\frac{2 \cdot(15 \log n)^{2}}{36 \log n}\right)<\frac{1}{n^{2}} .
\end{aligned}
$$

Apply Chernoff Bound

Take X to be, say, $36 \log n$, and let $Y_{i}, i=1, \cdots, X$, be the indicator variable that the i-th step is upward. Then $\mathbf{E}\left[Y_{i}\right]=\frac{1}{2}$. Let Y be $\sum_{i} Y_{i}$. By Chernoff bound,

$$
\begin{aligned}
\operatorname{Pr}[Y \leq 3 \log n] & =\operatorname{Pr}[Y \leq \mathbf{E}[Y]-15 \log n] \\
& \leq \exp \left(-\frac{2 \cdot(15 \log n)^{2}}{36 \log n}\right)<\frac{1}{n^{2}} .
\end{aligned}
$$

This analysis was performed for a specific node x. By the union bound, with probability at least $1-\frac{1}{n}$, no node takes more than $36 \log n$ steps to reach level H.

Putting Everything Together

Let A be the bad event that the highest level is more than $3 \log n$, and B be the bad event that, starting from some node, out of X steps there are fewer than $3 \log n$ steps.

Putting Everything Together

Let A be the bad event that the highest level is more than $3 \log n$, and B be the bad event that, starting from some node, out of X steps there are fewer than $3 \log n$ steps.
We have bounded $\operatorname{Pr}[A] \leq \frac{1}{n^{2}}$, and $\operatorname{Pr}[B] \leq \frac{1}{n}$.

Putting Everything Together

Let A be the bad event that the highest level is more than $3 \log n$, and B be the bad event that, starting from some node, out of X steps there are fewer than $3 \log n$ steps.
We have bounded $\operatorname{Pr}[A] \leq \frac{1}{n^{2}}$, and $\operatorname{Pr}[B] \leq \frac{1}{n}$.
Now by a final union bound, with probability at least $1-\frac{2}{n}$, there are no nodes beyond level $L_{3 \log n}$ and every node reaches that level within $36 \log n$ steps. So Find takes time $O(\log n)$ for every node with high probability.

Application in Distributed Systems: Peer-to-Peer Systems

- A peer-to-peer (P2P) system has n nodes, each maintaining a host of connections to its neighbors, and none having global knowledge.

Application in Distributed Systems: Peer-to-Peer Systems

- A peer-to-peer (P2P) system has n nodes, each maintaining a host of connections to its neighbors, and none having global knowledge.
- Keeping everything fully connected is way too expensive.

Image credit: mysterium.network

Application in Distributed Systems: Peer-to-Peer Systems

- A peer-to-peer (P2P) system has n nodes, each maintaining a host of connections to its neighbors, and none having global knowledge.
- Keeping everything fully connected is way too expensive.

A simulation of a peer-to-peer network

Image credit: mysterium.network

- A request of a node to communicate with another can take $O(n)$ time to traverse the network if we are not careful.

Idea of SkipNet

- We can use the idea of skip list to organize nodes in a P2P network.

Idea of SkipNet

- We can use the idea of skip list to organize nodes in a P2P network.
- Give each node an identifier, similar to the key value of a node in the database.

Idea of SkipNet

- We can use the idea of skip list to organize nodes in a P2P network.
- Give each node an identifier, similar to the key value of a node in the database.
- Given each node a bitstring of length $O(\log n)$.

Idea of SkipNet

- We can use the idea of skip list to organize nodes in a P2P network.
- Give each node an identifier, similar to the key value of a node in the database.
- Given each node a bitstring of length $O(\log n)$.
- There are multiple levels. Nodes sharing the same prefixes of length k are connected by an (ordered) linked list on level k.

Idea of SkipNet

- We can use the idea of skip list to organize nodes in a P2P network.
- Give each node an identifier, similar to the key value of a node in the database.
- Given each node a bitstring of length $O(\log n)$.
- There are multiple levels. Nodes sharing the same prefixes of length k are connected by an (ordered) linked list on level k.
- The resulting structure is similar to a skip list, except that on each level there are multiple lists.

Idea of SkipNet

- We can use the idea of skip list to organize nodes in a P2P network.
- Give each node an identifier, similar to the key value of a node in the database.
- Given each node a bitstring of length $O(\log n)$.
- There are multiple levels. Nodes sharing the same prefixes of length k are connected by an (ordered) linked list on level k.
- The resulting structure is similar to a skip list, except that on each level there are multiple lists.
- To access a node, we go as far as possible on a high level, then descend and continue.

