Learning Goals

- Basic definitions of finite probabilities: sample space, probability, events
- State and apply union bound.
- Define independence, and apply its properties in probability calculations
- Contention resolution with random access, and analysis of its efficiency

Borges's Garden of Forking Paths

Borges's Garden of Forking Paths

- Leaves are realizations of the world.

Borges's Garden of Forking Paths

A Garden of Forking Paths

- Leaves are realizations of the world.
- "Sample space" is the set of those realizations.

Borges's Garden of Forking Paths

A Garden of Forking Paths

- Leaves are realizations of the world.
- "Sample space" is the set of those realizations.
- A probability space is defined by weights on those realizations.

Discrete/Finite Probability Space

- Finite sample space: Ω (intuitively, the set of all realizable outcomes)

Discrete/Finite Probability Space

- Finite sample space: Ω (intuitively, the set of all realizable outcomes)
- Each point (outcome) $i \in \Omega$ has a probability mass $p(i) \geq 0$. We require $\sum_{i} p(i)=1$.

Discrete/Finite Probability Space

- Finite sample space: Ω (intuitively, the set of all realizable outcomes)
- Each point (outcome) $i \in \Omega$ has a probability mass $p(i) \geq 0$. We require $\sum_{i} p(i)=1$.
- An event \mathcal{E} is a subset of Ω.

Discrete/Finite Probability Space

- Finite sample space: Ω (intuitively, the set of all realizable outcomes)
- Each point (outcome) $i \in \Omega$ has a probability mass $p(i) \geq 0$. We require $\sum_{i} p(i)=1$.
- An event \mathcal{E} is a subset of Ω.
- $\operatorname{Pr}[\mathcal{E}]=\sum_{i \in \mathcal{E}} p(i)$.

Example

- Let Ω be the set of outcomes of two rolls of a die. Then $|\Omega|=36$.

Discrete/Finite Probability Space

- Finite sample space: Ω (intuitively, the set of all realizable outcomes)
- Each point (outcome) $i \in \Omega$ has a probability mass $p(i) \geq 0$. We require $\sum_{i} p(i)=1$.
- An event \mathcal{E} is a subset of Ω.
- $\operatorname{Pr}[\mathcal{E}]=\sum_{i \in \mathcal{E}} p(i)$.

Example

- Let Ω be the set of outcomes of two rolls of a die. Then $|\Omega|=36$.
- If everything is fair, then each outcome has probability mass $1 / 36$.

Discrete/Finite Probability Space

- Finite sample space: Ω (intuitively, the set of all realizable outcomes)
- Each point (outcome) $i \in \Omega$ has a probability mass $p(i) \geq 0$. We require $\sum_{i} p(i)=1$.
- An event \mathcal{E} is a subset of Ω.
- $\operatorname{Pr}[\mathcal{E}]=\sum_{i \in \mathcal{E}} p(i)$.

Example

- Let Ω be the set of outcomes of two rolls of a die. Then $|\Omega|=36$.
- If everything is fair, then each outcome has probability mass $1 / 36$.
- Let \mathcal{E} be the event that the sum of the two numbers is 11 , then $\mathcal{E}=\{(6,5),(5,6)\}$, so $\operatorname{Pr}[\mathcal{E}]=1 / 18$.

Set operations on events

- Let A and B be two events of a probability space.

Set operations on events

- Let A and B be two events of a probability space.
- \bar{A}, the complement of A, is the event that event A does not happen, and $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$.

Set operations on events

- Let A and B be two events of a probability space.
- \bar{A}, the complement of A, is the event that event A does not happen, and $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$.
- $A \cup B$ is the event that at least one of A and B happens.

Proposition (Union Bound)

$\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$.

Set operations on events

- Let A and B be two events of a probability space.
- \bar{A}, the complement of A, is the event that event A does not happen, and $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$.
- $A \cup B$ is the event that at least one of A and B happens.

Proposition (Union Bound)

$\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$.

- $A \cap B$ is the event that both A and B happen.

Definition

A and B are said to be independent if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$.

Set operations on events

- Let A and B be two events of a probability space.
- \bar{A}, the complement of A, is the event that event A does not happen, and $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$.
- $A \cup B$ is the event that at least one of A and B happens.

Proposition (Union Bound)

$\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$.

- $A \cap B$ is the event that both A and B happen.

Definition

A and B are said to be independent if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$.
Exercise: If A and B are independent, then so are \bar{A} and B, and so are \bar{A} and \bar{B}.

A Word on Infinite Sample Space

- Sometimes we are interested in infinite sample spaces, e.g.

A Word on Infinite Sample Space

- Sometimes we are interested in infinite sample spaces, e.g.
- A potentially infinite sequence of coin flips

A Word on Infinite Sample Space

- Sometimes we are interested in infinite sample spaces, e.g.
- A potentially infinite sequence of coin flips
- A number from $[0,1]$ uniformly at random

A Word on Infinite Sample Space

- Sometimes we are interested in infinite sample spaces, e.g.
- A potentially infinite sequence of coin flips
- A number from $[0,1]$ uniformly at random
- The probability of a "leaf" in such a space is often 0 .

A Word on Infinite Sample Space

- Sometimes we are interested in infinite sample spaces, e.g.
- A potentially infinite sequence of coin flips
- A number from $[0,1]$ uniformly at random
- The probability of a "leaf" in such a space is often 0 .
- One can define probability of events in fairly intuitive ways, satisfying the following axioms of probability:

A Word on Infinite Sample Space

- Sometimes we are interested in infinite sample spaces, e.g.
- A potentially infinite sequence of coin flips
- A number from $[0,1]$ uniformly at random
- The probability of a "leaf" in such a space is often 0 .
- One can define probability of events in fairly intuitive ways, satisfying the following axioms of probability:
(1) \forall "measurable" event $A, \operatorname{Pr}[A] \geq 0$.
(2) $\operatorname{Pr}[\Omega]=1$.
(3) for countably many disjoint events $A_{1}, A_{2}, \cdots, \operatorname{Pr}\left[\mathbb{U}_{i} A_{i}\right]=\sum_{i} \operatorname{Pr}\left[(] A_{i}\right)$.

A Word on Infinite Sample Space

- Sometimes we are interested in infinite sample spaces, e.g.
- A potentially infinite sequence of coin flips
- A number from $[0,1]$ uniformly at random
- The probability of a "leaf" in such a space is often 0 .
- One can define probability of events in fairly intuitive ways, satisfying the following axioms of probability:
(1) \forall "measurable" event $A, \operatorname{Pr}[A] \geq 0$.
(2) $\operatorname{Pr}[\Omega]=1$.
(3) for countably many disjoint events $A_{1}, A_{2}, \cdots, \operatorname{Pr}\left[\mathbb{U}_{i} A_{i}\right]=\sum_{i} \operatorname{Pr}\left[(] A_{i}\right)$.
- It takes measure theory to make things rigorous. We will make use of such probability spaces in very few occasions in this course.

Contention Resolution

- Set up: one server, n tasks

Contention Resolution

- Set up: one server, n tasks
- Tasks all want to use the server for a time step (we have discrete time steps)
- At each time step, each task may request the server:
- If exactly one task requests the server, the task gets served successfully;
- If more than one tasks request the server, clash and no task gets served in that step (but later steps are not affected).

Contention Resolution

- Set up: one server, n tasks
- Tasks all want to use the server for a time step (we have discrete time steps)
- At each time step, each task may request the server:
- If exactly one task requests the server, the task gets served successfully;
- If more than one tasks request the server, clash and no task gets served in that step (but later steps are not affected).
- We would like that all tasks to get served fast.
- Trivial if the tasks can agree on some ordering and requests the service one by one.

Contention Resolution

- Set up: one server, n tasks
- Tasks all want to use the server for a time step (we have discrete time steps)
- At each time step, each task may request the server:
- If exactly one task requests the server, the task gets served successfully;
- If more than one tasks request the server, clash and no task gets served in that step (but later steps are not affected).
- We would like that all tasks to get served fast.
- Trivial if the tasks can agree on some ordering and requests the service one by one.
- Problem: The tasks cannot talk with each other and there is no central authority.

Contention Resolution

- Set up: one server, n tasks
- Tasks all want to use the server for a time step (we have discrete time steps)
- At each time step, each task may request the server:
- If exactly one task requests the server, the task gets served successfully;
- If more than one tasks request the server, clash and no task gets served in that step (but later steps are not affected).
- We would like that all tasks to get served fast.
- Trivial if the tasks can agree on some ordering and requests the service one by one.
- Problem: The tasks cannot talk with each other and there is no central authority.
- Randomized strategy: In each time step, each task requests with some small probability p, independently.

Initial analysis

- Let $A[i, t]$ denote the event that task i sends a request at time t. Then $\operatorname{Pr}[A[i, t]]=p$.

Initial analysis

- Let $A[i, t]$ denote the event that task i sends a request at time t. Then $\operatorname{Pr}[A[i, t]]=p$.
- Then $\overline{A[i, t]}$ is the event that task i does not request service at time t, and $\operatorname{Pr}[\overline{A[i, t]}]=1-p$.

Initial analysis

- Let $A[i, t]$ denote the event that task i sends a request at time t. Then $\operatorname{Pr}[A[i, t]]=p$.
- Then $\overline{A[i, t]}$ is the event that task i does not request service at time t, and $\operatorname{Pr}[\overline{A[i, t}]]=1-p$.
- Let $S[i, t]$ denote the event that task i sends a request at time t and gets served, then

$$
\operatorname{Pr}[S[i, t]]=\operatorname{Pr}\left[A[i, t] \cap \bigcap_{j \neq i} \overline{A[j, t]}\right]=p(1-p)^{n-1} .
$$

The last equality comes from independence.

Initial analysis

- Let $A[i, t]$ denote the event that task i sends a request at time t. Then $\operatorname{Pr}[A[i, t]]=p$.
- Then $\overline{A[i, t]}$ is the event that task i does not request service at time t, and $\operatorname{Pr}[\bar{A}[i, t]]=1-p$.
- Let $S[i, t]$ denote the event that task i sends a request at time t and gets served, then

$$
\operatorname{Pr}[S[i, t]]=\operatorname{Pr}\left[A[i, t] \cap \bigcap_{j \neq i} \overline{A[j, t]}\right]=p(1-p)^{n-1} .
$$

The last equality comes from independence.

- To maximize $\operatorname{Pr}[S[i, t]]$, set $p=1 / n$.

Rate of success at each time step

We set p to maximize $\operatorname{Pr}[S[i, t]]$ to $\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}$. How good is this?

Rate of success at each time step

We set p to maximize $\operatorname{Pr}[S[i, t]]$ to $\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}$. How good is this?

Proposition

(1) The function $\left(1-\frac{1}{n}\right)^{n}$ converges monotonically from $\frac{1}{4}$ up to $\frac{1}{e}$ as n increases from 2.
(2) The function $\left(1-\frac{1}{n}\right)^{n-1}$ converges monotonically from $\frac{1}{2}$ down to $\frac{1}{e}$ as n increases from 2 .

Rate of success at each time step

We set p to maximize $\operatorname{Pr}[S[i, t]]$ to $\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}$. How good is this?

Proposition

(1) The function $\left(1-\frac{1}{n}\right)^{n}$ converges monotonically from $\frac{1}{4}$ up to $\frac{1}{e}$ as n increases from 2.
(2) The function $\left(1-\frac{1}{n}\right)^{n-1}$ converges monotonically from $\frac{1}{2}$ down to $\frac{1}{e}$ as n increases from 2.

So $1 /(e n) \leq \operatorname{Pr}[S[i, t]] \leq 1 /(2 n)$. Therefore $\operatorname{Pr}[S[i, t]]$ is asymtotically $\Theta(1 / n)$.

Waiting time for a particular task to succeed

- In each round, task i succeeds with probability $\operatorname{Pr}[S[i, t]]$. Roughly what is the waiting time for task i to succeed (for the first time)?

Waiting time for a particular task to succeed

- In each round, task i succeeds with probability $\operatorname{Pr}[S[i, t]]$. Roughly what is the waiting time for task i to succeed (for the first time)?
- Answers to "roughly what is X " where X is a random quantity:
- Give the expectation of X (think of it as the average): later today

Waiting time for a particular task to succeed

- In each round, task i succeeds with probability $\operatorname{Pr}[S[i, t]]$. Roughly what is the waiting time for task i to succeed (for the first time)?
- Answers to "roughly what is X " where X is a random quantity:
- Give the expectation of X (think of it as the average): later today
- Give a range $[a, b]$, and show that X is in $[a, b]$ with "high probability": today

Waiting time for a particular task to succeed

- In each round, task i succeeds with probability $\operatorname{Pr}[S[i, t]]$. Roughly what is the waiting time for task i to succeed (for the first time)?
- Answers to "roughly what is X " where X is a random quantity:
- Give the expectation of X (think of it as the average): later today
- Give a range $[a, b]$, and show that X is in $[a, b]$ with "high probability": today
- Remark: often, the two give answers that are close. Usually, the random quantity concentrates around its expectation. Tail bounds a.k.a. Concentration inequalities are used to show how fast this happens.

Waiting time for a particular task to succeed

- In each round, task i succeeds with probability $\operatorname{Pr}[S[i, t]]$. Roughly what is the waiting time for task i to succeed (for the first time)?
- Answers to "roughly what is X " where X is a random quantity:
- Give the expectation of X (think of it as the average): later today
- Give a range $[a, b]$, and show that X is in $[a, b]$ with "high probability": today
- Remark: often, the two give answers that are close. Usually, the random quantity concentrates around its expectation. Tail bounds a.k.a. Concentration inequalities are used to show how fast this happens.
- Probability with which task i does not succeed in the first t steps:

$$
\operatorname{Pr}\left[\cap_{r=1}^{t} \overline{S[i, r]}\right]=\prod_{r=1}^{t}[1-\operatorname{Pr}[S[i, r]]]=\left[1-\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}\right]^{t}
$$

Waiting time for a particular task to succeed

- Probability that a task fails in the first t steps: $\left[1-\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}\right]^{t}$.

Waiting time for a particular task to succeed

- Probability that a task fails in the first t steps: $\left[1-\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}\right]^{t}$.
- We'd like to upper bound this probability:

$$
\operatorname{Pr}\left[\cap_{r=1}^{t} \overline{S[i, r]}\right] \leq\left[1-\frac{1}{e n}\right]^{t}=\left[1-\frac{1}{e n}\right]^{e n \cdot \frac{t}{e n}} \leq e^{-t / e n}
$$

Waiting time for a particular task to succeed

- Probability that a task fails in the first t steps: $\left[1-\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}\right]^{t}$.
- We'd like to upper bound this probability:

$$
\operatorname{Pr}\left[\cap_{r=1}^{t} \overline{S[i, r]}\right] \leq\left[1-\frac{1}{e n}\right]^{t}=\left[1-\frac{1}{e n}\right]^{e n \cdot \frac{t}{e n}} \leq e^{-t / e n}
$$

- Setting t to be enc $\ln n$ for some $c>0$, the probability of failure for the first t steps is at most n^{-c}, which vanishes as n grows.

Waiting time for a particular task to succeed

- Probability that a task fails in the first t steps: $\left[1-\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}\right]^{t}$.
- We'd like to upper bound this probability:

$$
\operatorname{Pr}\left[\cap_{r=1}^{t} \overline{S[i, r]}\right] \leq\left[1-\frac{1}{e n}\right]^{t}=\left[1-\frac{1}{e n}\right]^{e n \cdot \frac{t}{e n}} \leq e^{-t / e n}
$$

- Setting t to be enc $\ln n$ for some $c>0$, the probability of failure for the first t steps is at most n^{-c}, which vanishes as n grows.
- Big picture (useful rough estimations): if we have a biased coin that gives Heads with probability $1 / k$:
- In about k independent tosses, one "expects" to see a Heads;
- However, with constant probability, a Heads doesn't show in k tosses;
- But if one tosses the coin $\Theta(k \log k)$ times, the probability that no Heads shows up quickly tends to 0 .

Waiting time for all tasks to succeed

- Let $F[i, t]$ denote the event that task i fails in the first t steps, we have shown $\operatorname{Pr}[F[i, t]] \leq e^{-t / e n} \leq n^{-c}$ for $t=\lceil e n \cdot c \ln n\rceil$.

Waiting time for all tasks to succeed

- Let $F[i, t]$ denote the event that task i fails in the first t steps, we have shown $\operatorname{Pr}[F[i, t]] \leq e^{-t / e n} \leq n^{-c}$ for $t=\lceil e n \cdot c \ln n\rceil$.
- The event that some task keeps failing in the first t steps is then $\cup_{i=1}^{n} F[i, t]$.

Waiting time for all tasks to succeed

- Let $F[i, t]$ denote the event that task i fails in the first t steps, we have shown $\operatorname{Pr}[F[i, t]] \leq e^{-t / e n} \leq n^{-c}$ for $t=\lceil e n \cdot c \ln n\rceil$.
- The event that some task keeps failing in the first t steps is then $\cup_{i=1}^{n} F[i, t]$.
By the union bound, we have

$$
\operatorname{Pr}\left[\cup_{i=1}^{n} F[i, t]\right] \leq \sum_{i=1}^{n} e^{-t / e n}=n e^{-\frac{t}{e n}} .
$$

So for $t=\lceil 2 e n \ln n\rceil$, this is at most $\frac{1}{n}$.

Birthday Paradox

Birthday Paradox

- We currently have 35 students in this class. Let's assume their birthdays are independently distributed uniformly throughout the year, say, from 1 to 365.

Birthday Paradox

- We currently have 35 students in this class. Let's assume their birthdays are independently distributed uniformly throughout the year, say, from 1 to 365 .
- If you were to bet, would you bet that some pair of students have the same birthday or not?

Birthday Paradox

- We currently have 35 students in this class. Let's assume their birthdays are independently distributed uniformly throughout the year, say, from 1 to 365.
- If you were to bet, would you bet that some pair of students have the same birthday or not?
- The probability that no two among n students have the same birthday is $\prod_{i=1}^{n-1}\left(1-\frac{i}{365}\right)$.

Birthday Paradox

- We currently have 35 students in this class. Let's assume their birthdays are independently distributed uniformly throughout the year, say, from 1 to 365.
- If you were to bet, would you bet that some pair of students have the same birthday or not?
- The probability that no two among n students have the same birthday is $\prod_{i=1}^{n-1}\left(1-\frac{i}{365}\right)$.
- A useful upper bound: for $x \in(0,1), 1-x<e^{-x}$. So the above probability is at most $\prod_{i=1}^{n-1} e^{-i / 365}=e^{-n(n-1) / 730}$.

Birthday Paradox

- We currently have 35 students in this class. Let's assume their birthdays are independently distributed uniformly throughout the year, say, from 1 to 365 .
- If you were to bet, would you bet that some pair of students have the same birthday or not?
- The probability that no two among n students have the same birthday is $\prod_{i=1}^{n-1}\left(1-\frac{i}{365}\right)$.
- A useful upper bound: for $x \in(0,1), 1-x<e^{-x}$. So the above probability is at most $\prod_{i=1}^{n-1} e^{-i / 365}=e^{-n(n-1) / 730}$.
- As long as $e^{-n(n-1) / 730}<\frac{1}{2}$, i.e., $n \geq 23$, you should bet that some pair of students have the same birthday.

