Learning Goals

- State the condition Markov inequality
- Understand distributions for which Markov inequality is tight
- Define perfect hashing
- Implementation and proof of perfect hashing
- Understand the method of amplification by independent trials

Concentration Inqualities

 Often it is not enough to estimate the expectation of a random variable, but to say that with good probability its value is not far from the expectation.

Concentration Inqualities

- Often it is not enough to estimate the expectation of a random variable, but to say that with good probability its value is not far from the expectation.
- Such a phenomenon is called *concentration*.

Concentration Inqualities

- Often it is not enough to estimate the expectation of a random variable, but to say that with good probability its value is not far from the expectation.
- Such a phenomenon is called *concentration*.
- Tools that upper bound the probability with which a random variable deviates far from its expectation are known as concentration inequalities or tail bounds.

Markov Inequality

Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1, then for any $\alpha > 1$,

$$\Pr\left[X \geq \alpha \operatorname{E}\left[X\right]\right] \leq \frac{1}{\alpha}.$$

Markov Inequality

Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1, then for any $\alpha > 1$,

$$\Pr\left[X \geq \alpha \,\mathsf{E}\left[X\right]\right] \leq \frac{1}{\alpha}.$$

Proof.

Let *Y* be the indicator variable for $X \ge \alpha \mathbf{E}[X]$.

Markov Inequality

Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1, then for any $\alpha > 1$,

$$\Pr\left[X \geq \alpha \,\mathsf{E}\left[X\right]\right] \leq \frac{1}{\alpha}.$$

Proof.

Let *Y* be the indicator variable for $X \ge \alpha \mathbf{E}[X]$. Then

$$\Pr\left[X \ge \mathbf{E}\left[X\right]\right] = \Pr\left[Y = 1\right] = \mathbf{E}\left[Y\right] \le \mathbf{E}\left[\frac{X}{\alpha \mathbf{E}[X]}\right] = \frac{1}{\alpha}.$$

 Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.

- Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.
- Equivalently, the theorem can be stated as $\Pr[X \ge a] \le \frac{E[X]}{a}$ for any a > 0.

- Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.
- Equivalently, the theorem can be stated as $\Pr[X \ge a] \le \frac{E[X]}{a}$ for any a > 0.
 - Stated this way, the inequality has bite only for a > E[X].

- Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.
- Equivalently, the theorem can be stated as $\Pr[X \ge a] \le \frac{E[X]}{a}$ for any a > 0.
 - Stated this way, the inequality has bite only for a > E[X].
- Note the condition that *X* must be a nonnegative random variable.

• Essence of the proof: among distributions having the same Pr[X > a], which one minimizes E[X]?

- Essence of the proof: among distributions having the same Pr[X > a], which one minimizes E[X]?
- Answer: when X < a, X should be 0; when $X \ge a$, X should be a.

- Essence of the proof: among distributions having the same Pr[X > a], which one minimizes E[X]?
- Answer: when X < a, X should be 0; when $X \ge a$, X should be a.
- The distribution for which Markov inequality tight is a two-point distribution.

- Essence of the proof: among distributions having the same Pr[X > a], which one minimizes E[X]?
- Answer: when X < a, X should be 0; when $X \ge a$, X should be a.
- The distribution for which Markov inequality tight is a two-point distribution.
- With this intuition, it is not difficult to prove the following corollary:

Corollary (Reverse Markov Inequality)

If X is a random variable that is never larger than a, then for any b < a,

$$\Pr\left[X \le b\right] \le \frac{a - \mathsf{E}[X]}{a - b}.$$

Definition

A hash function $h: U \to \{0, ..., m-1\}$ is *perfect* on $S \subseteq U$ if FIND(x) for every $x \in S$ takes O(1) time.

Definition

A hash function $h: U \to \{0, ..., m-1\}$ is *perfect* on $S \subseteq U$ if FIND(x) for every $x \in S$ takes O(1) time.

• Recall: to store a dataset of n entries, it suffices to have a hash table of size $m = \Theta(n)$ so that each element has O(1) collisions in expectation if we sample a hash function from a universal hash family.

Definition

A hash function $h: U \to \{0, ..., m-1\}$ is *perfect* on $S \subseteq U$ if FIND(x) for every $x \in S$ takes O(1) time.

- Recall: to store a dataset of n entries, it suffices to have a hash table of size $m = \Theta(n)$ so that each element has O(1) collisions in expectation if we sample a hash function from a universal hash family.
- It does not follow immediately that there exists an $h \in H$ under which every element has only O(1) collisions.

Definition

A hash function $h: U \to \{0, ..., m-1\}$ is *perfect* on $S \subseteq U$ if FIND(x) for every $x \in S$ takes O(1) time.

- Recall: to store a dataset of n entries, it suffices to have a hash table of size $m = \Theta(n)$ so that each element has O(1) collisions in expectation if we sample a hash function from a universal hash family.
- It does not follow immediately that there exists an $h \in H$ under which every element has only O(1) collisions.
 - In fact, we will see next week that, under the mapping that sends every element in U uniformly at random to $\{0, \ldots, m-1\}$, for m=n, with high probability the worst bucket has $\Theta(\log n/\log\log n)$ collisions.

• If we allow m to be $\Omega(n^2)$, then it is easy to have perfect hashing.

• If we allow m to be $\Omega(n^2)$, then it is easy to have perfect hashing.

Claim

Let H be a universal hash family from U to $\{0, \ldots, m\}$, then for any $S \subseteq U$ with $|S| = n \le \sqrt{m}$, when we use a uniformly random h from H, with probability at least $\frac{1}{2}$, there is no collision under h.

• If we allow m to be $\Omega(n^2)$, then it is easy to have perfect hashing.

Claim

Let H be a universal hash family from U to $\{0, \ldots, m\}$, then for any $S \subseteq U$ with $|S| = n \le \sqrt{m}$, when we use a uniformly random h from H, with probability at least $\frac{1}{2}$, there is no collision under h.

Proof.

By definition of universal hashing, for every $x \neq y$ in S,

$$\Pr_{h \sim H}[h(x) = h(y)] \leq \frac{1}{m}.$$

• If we allow m to be $\Omega(n^2)$, then it is easy to have perfect hashing.

Claim

Let H be a universal hash family from U to $\{0, \ldots, m\}$, then for any $S \subseteq U$ with $|S| = n \le \sqrt{m}$, when we use a uniformly random h from H, with probability at least $\frac{1}{2}$, there is no collision under h.

Proof.

By definition of universal hashing, for every $x \neq y$ in S,

$$\Pr_{h \sim H}[h(x) = h(y)] \leq \frac{1}{m}.$$

By the union bound, the probability that any collision happens is at most

$$\sum_{x\neq y\in S}\frac{1}{m}<\frac{n^2}{2}\cdot\frac{1}{m}\leq\frac{1}{2}.$$

• Is it possible to have perfect hashing with m = O(n)?

- Is it possible to have perfect hashing with m = O(n)?
- This is not an easy question, and remained open for some time. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).

- Is it possible to have perfect hashing with m = O(n)?
- This is not an easy question, and remained open for some time. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.

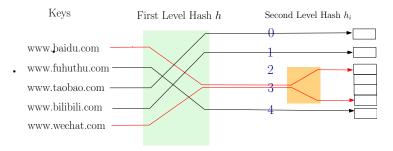
- Is it possible to have perfect hashing with m = O(n)?
- This is not an easy question, and remained open for some time. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.
 - Let $A[\cdot]$ be the array for the first level hash, and h be a hash function from U to $\{0, \ldots, n-1\}$.

- Is it possible to have perfect hashing with m = O(n)?
- This is not an easy question, and remained open for some time. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.
 - Let $A[\cdot]$ be the array for the first level hash, and h be a hash function from U to $\{0, \ldots, n-1\}$.
 - For each i = 0, ..., n-1, let n_i be the number of collisions in that bucket. Set up a hash table B_i of size n_i^2 , and a *perfect* hash function mapping U to $\{0, ..., n_i^2 1\}$.

- Is it possible to have perfect hashing with m = O(n)?
- This is not an easy question, and remained open for some time. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.
 - Let $A[\cdot]$ be the array for the first level hash, and h be a hash function from U to $\{0, \ldots, n-1\}$.
 - For each i = 0, ..., n-1, let n_i be the number of collisions in that bucket. Set up a hash table B_i of size n_i^2 , and a *perfect* hash function mapping U to $\{0, ..., n_i^2 1\}$.
 - When looking up x, we first find its position in the first level. Let j be h(x). Then we look up $B_i[h_i(x)]$.

8 / 12

Illustration: Perfect Hashing



• The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.

- The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.
- We need h to satisfy $\sum_i n_i^2 = O(n)$.

- The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.
- We need h to satisfy $\sum_i n_i^2 = O(n)$.

Lemma

Let h be sampled uniformly at random from a universal hash function family mapping U to $\{0,\ldots,n-1\}$. Let n_i be $|h^{-1}(i)|$, the number of elements mapped to i by h. Then $\Pr[\sum_i n_i^2 \leq 4n] \geq \frac{1}{2}$.

- The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.
- We need h to satisfy $\sum_{i} n_i^2 = O(n)$.

Lemma

Let h be sampled uniformly at random from a universal hash function family mapping U to $\{0, \ldots, n-1\}$. Let n_i be $|h^{-1}(i)|$, the number of elements mapped to i by h. Then $\Pr[\sum_i n_i^2 \le 4n] \ge \frac{1}{2}$.

Proof.

Game plan: we first show that $E[\sum_i n_i^2]$ is no more than 2n. Then the conclusion follows from Markov inequality.

- The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.
- We need h to satisfy $\sum_i n_i^2 = O(n)$.

Lemma

Let h be sampled uniformly at random from a universal hash function family mapping U to $\{0,\ldots,n-1\}$. Let n_i be $|h^{-1}(i)|$, the number of elements mapped to i by h. Then $\Pr[\sum_i n_i^2 \le 4n] \ge \frac{1}{2}$.

Proof.

Game plan: we first show that $\mathbf{E}[\sum_i n_i^2]$ is no more than 2*n*. Then the conclusion follows from Markov inequality.

For $x \neq y$ in S, let C_{xy} be the indicator variable for the event that x clashes with y under h, then $\mathbf{E}[C_{xy}] \leq \frac{1}{n}$ by universality.

Proof.

Key observation: $\sum_i n_i^2 = n + \sum_{x \in S} \sum_{y \in S \setminus \{x\}} C_{xy}$.

Proof.

Key observation:
$$\sum_{i} n_i^2 = n + \sum_{x \in S} \sum_{y \in S \setminus \{x\}} C_{xy}$$
.
(Let S_i be $h^{-1}(i)$, then $\sum_{x \in S_i} \sum_{y \in S \setminus \{x\}} C_{xy}$ contributes $n_i(n_i - 1)$.)

Proof.

Key observation: $\sum_{i} n_i^2 = n + \sum_{x \in S} \sum_{y \in S \setminus \{x\}} C_{xy}$. (Let S_i be $h^{-1}(i)$, then $\sum_{x \in S_i} \sum_{y \in S \setminus \{x\}} C_{xy}$ contributes $n_i(n_i - 1)$.) Now we can bound

$$\mathsf{E}\left[\sum_{x\in\mathcal{S}}\sum_{y\in\mathcal{S}\setminus\{x\}}\right]C_{xy}\leq n(n-1)\cdot\frac{1}{n}\leq n.$$

Proof.

Key observation: $\sum_{i} n_i^2 = n + \sum_{x \in S} \sum_{y \in S \setminus \{x\}} C_{xy}$. (Let S_i be $h^{-1}(i)$, then $\sum_{x \in S_i} \sum_{y \in S \setminus \{x\}} C_{xy}$ contributes $n_i(n_i - 1)$.) Now we can bound

$$\mathsf{E}\left|\sum_{x\in S}\sum_{y\in S\setminus\{x\}}\right|C_{xy}\leq n(n-1)\cdot\frac{1}{n}\leq n.$$

Therefore $\mathbf{E}[\sum_{i} n_{i}^{2}] \leq 2n$.

• How do we make use of the lemma?

- How do we make use of the lemma?
- Each time we sample an h, we satisfy the space requirement with probability at least $\frac{1}{2}$.

- How do we make use of the lemma?
- Each time we sample an h, we satisfy the space requirement with probability at least $\frac{1}{2}$.
- We can check if we succeed in polynomial time. If not, we simply try again.

- How do we make use of the lemma?
- Each time we sample an h, we satisfy the space requirement with probability at least $\frac{1}{2}$.
- We can check if we succeed in polynomial time. If not, we simply try again.
- After *k* trials, we succeed with probability $1 \frac{1}{2^k}$.