Learning Goals

- Concept of dimensenality reduction
- Correctly state the procedure and guarantee of Johnson-Lindenstrauss transform
- Proof idea of JL-transform

• Data points can often live in very high dimensions

- Data points can often live in very high dimensions
 - Images

- Data points can often live in very high dimensions
 - Images
 - Vector representation of articles

- Data points can often live in very high dimensions
 - Images
 - Vector representation of articles
 - Vector representation of words

- Data points can often live in very high dimensions
 - Images
 - Vector representation of articles
 - Vector representation of words
- Many algorithms are very slow when run on high dimensional input
 - Curse of dimensionality

- Data points can often live in very high dimensions
 - Images
 - Vector representation of articles
 - Vector representation of words
- Many algorithms are very slow when run on high dimensional input
 - Curse of dimensionality
- Dimensionality reduction: Transform data to lower dimensions while preserving information useful for analysis/application

Johnson-Lindenstrauss

• Distances between data points are often meaningful

Johnson-Lindenstrauss

- Distances between data points are often meaningful
- For $x \in \mathbb{R}^d$, the ℓ_2 *norm* of x is

$$||x|| = \left(\sum_{i=1}^d x_i^2\right)^{1/2}.$$

For $x, y \in \mathbb{R}^d$, ||x - y|| is their ℓ_2 -distance, or Euclidean distance.

Johnson-Lindenstrauss

- Distances between data points are often meaningful
- For $x \in \mathbb{R}^d$, the ℓ_2 *norm* of x is

$$||x|| = \left(\sum_{i=1}^d x_i^2\right)^{1/2}.$$

For $x, y \in \mathbb{R}^d$, ||x - y|| is their ℓ_2 -distance, or Euclidean distance.

 The Johnson-Lindenstrauss transform is a randomized dimensionality reduction algorithm that approximately preserves Euclidean distances.

JL Statement

Theorem (Johnson-Lindenstrauss)

For arbitrary $x_1, \ldots, x_n \in \mathbb{R}^d$, and any $\epsilon \in (0, 1)$, there is $t = O(\log n/\epsilon^2)$ such that there are $y_1, \ldots, y_n \in \mathbb{R}^t$ with

$$(1 - \epsilon)||x_j|| \le ||y_j|| \le (1 + \epsilon)||x_j||, \quad \forall j$$

$$(1 - \epsilon)||x_j - x_{j'}|| \le ||y_j - y_{j'}|| \le (1 + \epsilon)||x_j - x_{j'}||, \quad \forall j, j'.$$

Moreover, y_1, \ldots, y_n can be computed in polynomial time.

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f : \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \le \frac{||f(v)||}{\sqrt{t}} \le 1+\epsilon\right] \ge 1-2\delta.$$

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f : \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \le \frac{||f(v)||}{\sqrt{t}} \le 1+\epsilon\right] \ge 1-2\delta.$$

Proof of Theorem using Lemma.

Consider
$$W = \{x_1, ..., x_n\} \cup \{x_i - x_j : i \neq j\}.$$

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f : \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \le \frac{||f(v)||}{\sqrt{t}} \le 1+\epsilon\right] \ge 1-2\delta.$$

Proof of Theorem using Lemma.

Consider
$$W = \{x_1, \dots, x_n\} \cup \{x_i - x_j : i \neq j\}$$
. Note $|W| \leq n^2$. Take $\delta = 1/n^3$.

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f : \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \le \frac{||f(v)||}{\sqrt{t}} \le 1+\epsilon\right] \ge 1-2\delta.$$

Proof of Theorem using Lemma.

Consider
$$W = \{x_1, \dots, x_n\} \cup \{x_i - x_j : i \neq j\}$$
. Note $|W| \leq n^2$. Take $\delta = 1/n^3$. For each $w \in W$, consider $v = \frac{w}{||w||}$.

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f : \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \le \frac{||f(v)||}{\sqrt{t}} \le 1+\epsilon\right] \ge 1-2\delta.$$

Proof of Theorem using Lemma.

Consider $W = \{x_1, \dots, x_n\} \cup \{x_i - x_j : i \neq j\}$. Note $|W| \leq n^2$. Take $\delta = 1/n^3$. For each $w \in W$, consider $v = \frac{w}{||w||}$. Consider the event

$$\mathcal{E}_w := \left\{ \frac{||f(w)||}{\sqrt{t}} \notin [1 - \epsilon, 1 + \epsilon] \cdot ||w|| \right\} = \left\{ \frac{||f(v)||}{\sqrt{t}} \notin [1 - \epsilon, 1 + \epsilon] \right\}.$$

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f: \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \le \frac{||f(v)||}{\sqrt{t}} \le 1+\epsilon\right] \ge 1-2\delta.$$

Proof of Theorem using Lemma.

Consider $W = \{x_1, \dots, x_n\} \cup \{x_i - x_i : i \neq j\}$. Note $|W| \leq n^2$. Take $\delta = 1/n^3$. For each $w \in W$, consider $v = \frac{w}{||w||}$. Consider the event

$$\mathcal{E}_w := \left\{ \frac{||f(w)||}{\sqrt{t}} \notin [1 - \epsilon, 1 + \epsilon] \cdot ||w|| \right\} = \left\{ \frac{||f(v)||}{\sqrt{t}} \notin [1 - \epsilon, 1 + \epsilon] \right\}.$$

Each such event has probability $\leq 2\delta$. By union bound, the probability that none of these happen is $\leq |W| \cdot 2\delta \leq \frac{2}{n}$.

• For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x]$.

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x]$.
 - Example: For *X* uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x]$.
 - Example: For X uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.
- For a continuous random variable, the *probability density function* (PDF) is $f_X(x) := \frac{d}{dx} F_X(x)$.

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x]$.
 - Example: For X uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.
- For a continuous random variable, the *probability density function* (PDF) is $f_X(x) := \frac{d}{dx} F_X(x)$.
 - For X uniformly distributed on [0, 1], f(x) = 1 for $x \in [0, 1]$.

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x]$.
 - Example: For X uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.
- For a continuous random variable, the *probability density function* (PDF) is $f_X(x) := \frac{d}{dx} F_X(x)$.
 - For *X* uniformly distributed on [0, 1], f(x) = 1 for $x \in [0, 1]$.
- A random variable is drawn from *Gaussian distribution* (or *Normal distribution*) $\mathcal{N}(\mu, \sigma^2)$ if its PDF is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\cdot\left(\frac{x-\mu}{\sigma}\right)^2}.$$

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x]$.
 - Example: For X uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.
- For a continuous random variable, the *probability density function* (PDF) is $f_X(x) := \frac{d}{dx} F_X(x)$.
 - For *X* uniformly distributed on [0, 1], f(x) = 1 for $x \in [0, 1]$.
- A random variable is drawn from *Gaussian distribution* (or *Normal distribution*) $\mathcal{N}(\mu, \sigma^2)$ if its PDF is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\cdot\left(\frac{x-\mu}{\sigma}\right)^2}.$$

• In particular, the *standard normal distribution* has PDF $\varphi(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$.

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x]$.
 - Example: For X uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.
- For a continuous random variable, the *probability density function* (PDF) is $f_X(x) := \frac{d}{dx} F_X(x)$.
 - For *X* uniformly distributed on [0, 1], f(x) = 1 for $x \in [0, 1]$.
- A random variable is drawn from *Gaussian distribution* (or *Normal distribution*) $\mathcal{N}(\mu, \sigma^2)$ if its PDF is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\cdot\left(\frac{x-\mu}{\sigma}\right)^2}.$$

- In particular, the *standard normal distribution* has PDF $\varphi(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$.
- If $X \sim \mathcal{N}(0, 1)$, then $\sigma X + \mu \sim \mathcal{N}(\mu, \sigma^2)$.

6/11

Properties of Gaussian Distribution

Theorem

Linear combinations of independent Gaussian variables are still Gaussian.

Properties of Gaussian Distribution

Theorem

Linear combinations of independent Gaussian variables are still Gaussian.

Fact: The moment generating functions $\mathbf{E}[e^{\lambda X}]$ of a random variable X uniquely determines its CDF.

Properties of Gaussian Distribution

Theorem

Linear combinations of independent Gaussian variables are still Gaussian.

Fact: The moment generating functions $\mathbf{E}[e^{\lambda X}]$ of a random variable X uniquely determines its CDF.

Proof of Theorem.

We show only the zero mean case. For $X \sim \mathcal{N}(0, \sigma^2)$,

$$\mathbf{E}\left[e^{\lambda X}\right] = \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2} + \lambda x\right) dx$$
$$= \frac{e^{\sigma^2 \lambda^2/2}}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(\frac{x}{\sigma} - \sigma\lambda)^2} dx = e^{\frac{\sigma^2 \lambda^2}{2}}.$$

So for independent $X \sim \mathcal{N}(0, \sigma_1^2)$, $Y \sim \mathcal{N}(0, \sigma_2^2)$, $\mathbf{E}[e^{\lambda(X+Y)}] = \mathbf{E}[e^{\lambda X}] \cdot \mathbf{E}[e^{\lambda Y}] = e^{(\sigma_1^2 + \sigma_2^2)\lambda^2/2}$.

• For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
- I.e., $E[(\sum_i G_i x_i)^2] = E[\sum_i x_i^2] = ||x||^2 = 1.$

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
- I.e., $\mathbf{E}[(\sum_i G_i x_i)^2] = \mathbf{E}[\sum_i x_i^2] = ||x||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
- I.e., $\mathbf{E}[(\sum_i G_i x_i)^2] = \mathbf{E}[\sum_i x_i^2] = ||x||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
- I.e., $E[(\sum_i G_i x_i)^2] = E[\sum_i x_i^2] = ||x||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
 - The resulting random vector $Ax \in \mathbb{R}^t$ has each coordinate drawn from $\mathcal{N}(0, 1)$.

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
- I.e., $E[(\sum_i G_i x_i)^2] = E[\sum_i x_i^2] = ||x||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
 - The resulting random vector $Ax \in \mathbb{R}^t$ has each coordinate drawn from $\mathcal{N}(0, 1)$.
 - The expectation of $||Ax||^2$ is t.

8 / 11

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
- I.e., $E[(\sum_i G_i x_i)^2] = E[\sum_i x_i^2] = ||x||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
 - The resulting random vector $Ax \in \mathbb{R}^t$ has each coordinate drawn from $\mathcal{N}(0, 1)$.
 - The expectation of $||Ax||^2$ is t.
 - Let $A' = \frac{1}{\sqrt{t}}A$, then $\mathbb{E}[||A'x||^2] = 1$.

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
- I.e., $\mathbf{E}[(\sum_i G_i x_i)^2] = \mathbf{E}[\sum_i x_i^2] = ||x||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
 - The resulting random vector $Ax \in \mathbb{R}^t$ has each coordinate drawn from $\mathcal{N}(0, 1)$.
 - The expectation of $||Ax||^2$ is t.
 - Let $A' = \frac{1}{\sqrt{t}}A$, then $\mathbf{E}[||A'x||^2] = 1$.
- We just need to show that the empirical average converges to the expectation fast enough with *t*.

• For each i = 1, ..., t, let Y_i be the i^{th} coordinate of AX/\sqrt{t} .

- For each i = 1, ..., t, let Y_i be the i^{th} coordinate of AX/\sqrt{t} .
- Then Y_i is Gaussian from $\mathcal{N}(0, 1)$.

- For each i = 1, ..., t, let Y_i be the i^{th} coordinate of AX/\sqrt{t} .
- Then Y_i is Gaussian from $\mathcal{N}(0, 1)$.
- Let Y be $\sum_i Y_i^2$, then $\mathbf{E}[Y] = t$.

- For each i = 1, ..., t, let Y_i be the i^{th} coordinate of AX/\sqrt{t} .
- Then Y_i is Gaussian from $\mathcal{N}(0, 1)$.
- Let Y be $\sum_i Y_i^2$, then $\mathbf{E}[Y] = t$.

$$\Pr\left[\frac{||Ax||}{\sqrt{t}} \ge (1+\epsilon)\right] = \Pr\left[Y \ge (1+\epsilon)^2 t\right]$$
$$= \Pr\left[Y \ge (1+\epsilon)^2 \operatorname{E}\left[Y\right]\right].$$

- For each i = 1, ..., t, let Y_i be the i^{th} coordinate of AX/\sqrt{t} .
- Then Y_i is Gaussian from $\mathcal{N}(0, 1)$.
- Let Y be $\sum_i Y_i^2$, then $\mathbf{E}[Y] = t$.

$$\Pr\left[\frac{||Ax||}{\sqrt{t}} \ge (1+\epsilon)\right] = \Pr\left[Y \ge (1+\epsilon)^2 t\right]$$
$$= \Pr\left[Y \ge (1+\epsilon)^2 \operatorname{E}\left[Y\right]\right].$$

Let's bound $\Pr[Y > \alpha]$ for any α . For any $\lambda > 0$, we have

$$\begin{split} \Pr\left[Y \geq \alpha\right] &= \Pr\left[e^{\lambda Y} \geq e^{\lambda \alpha}\right] \\ &\leq \frac{\mathsf{E}[e^{\lambda Y}]}{e^{\lambda \alpha}} = \frac{\prod_{i} \mathsf{E}[e^{\lambda Y_{i}^{2}}]}{e^{\lambda \alpha}}. \end{split}$$

9/11

Moment Generating Function of χ^2 -distributions

If X_1, \cdot, X_k are independent standard normal random variables, then $Q = \sum_i X_i$ is said to be distributed according to the χ^2 -distribution with k degrees of freedom.

Moment Generating Function of χ^2 -distributions

If X_1, \cdot, X_k are independent standard normal random variables, then $Q = \sum_i X_i$ is said to be distributed according to the χ^2 -distribution with k degrees of freedom.

Lemma

If
$$X \sim \mathcal{N}(0, 1)$$
, then $\mathbf{E}[e^{\lambda X^2}] = 1/\sqrt{1-2\lambda}$, for $-\infty < \lambda < \frac{1}{2}$.

Moment Generating Function of χ^2 -distributions

If X_1, \cdot, X_k are independent standard normal random variables, then $Q = \sum_i X_i$ is said to be distributed according to the χ^2 -distribution with k degrees of freedom.

Lemma

If
$$X \sim \mathcal{N}(0, 1)$$
, then $\mathbf{E}[e^{\lambda X^2}] = 1/\sqrt{1-2\lambda}$, for $-\infty < \lambda < \frac{1}{2}$.

Proof.

$$\mathbf{E}\left[e^{\lambda X^2}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\lambda x^2 - \frac{x^2}{2}} dx$$
$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{1 - 2\lambda}} \int e^{-y^2/2} dy = \frac{1}{\sqrt{1 - 2\lambda}}.$$

where we substituted $y = \sqrt{1 - 2\lambda}x$.

Finishing Proof of Lemma

$$\Pr\left[Y \geq \alpha\right] \leq \frac{\prod_{i} \mathbf{E}\left[e^{\lambda Y_{i}^{2}}\right]}{e^{\lambda \alpha}} = (1 - 2\lambda)^{-t/2} e^{-\lambda \alpha}.$$

Finishing Proof of Lemma

$$\Pr\left[Y \geq \alpha\right] \leq \frac{\prod_{i} \mathbf{E}\left[e^{\lambda Y_{i}^{2}}\right]}{e^{\lambda \alpha}} = (1 - 2\lambda)^{-t/2} e^{-\lambda \alpha}.$$

Now minimize the RHS by setting $\lambda = \frac{1}{2}(1 - \frac{t}{\alpha})$, we obtain $\Pr[Y \ge \alpha] \le e^{(t-\alpha)/2}(t/\alpha)^{-t/2}$. Now let α be $(1 + \epsilon)^2 t$, we get

$$\Pr\left[Y \geq (1+\epsilon)^2 t\right] \leq \exp\left(-t(\epsilon + \frac{\epsilon^2}{2} - \ln(1+\epsilon))\right).$$

Finishing Proof of Lemma

$$\Pr\left[Y \geq \alpha\right] \leq \frac{\prod_{i} \mathbf{E}\left[e^{\lambda Y_{i}^{2}}\right]}{e^{\lambda \alpha}} = (1 - 2\lambda)^{-t/2} e^{-\lambda \alpha}.$$

Now minimize the RHS by setting $\lambda = \frac{1}{2}(1 - \frac{t}{\alpha})$, we obtain $\Pr[Y \ge \alpha] \le e^{(t-\alpha)/2}(t/\alpha)^{-t/2}$. Now let α be $(1 + \epsilon)^2 t$, we get

$$\Pr\left[Y \ge (1+\epsilon)^2 t\right] \le \exp\left(-t(\epsilon + \frac{\epsilon^2}{2} - \ln(1+\epsilon))\right).$$

Using basic calculus, we can show $\ln(1+\epsilon) \le \epsilon - \frac{\epsilon^2}{4}$ for $\epsilon \in [0,1]$, so we have

$$\Pr\left[Y \ge (1+\epsilon)^2 t\right] \le e^{-\frac{3}{4}\epsilon^2 t}.$$

