Algorithms and Data Structures for Big Data

Hu Fu @ SUFE. Sept 16, 2021

Teaching Staff

－Instructor：Hu Fu 伏虎
－Office： 504 School of Information Management \＆Engineering
－Email：fuhu＠mail．shufe．edu．cn
－Website：https：／／bb．shufe．edu．cn／
http：／／www．fuhuthu．com／BigData2022／
－Teaching Assistant：Qun Hu 胡群
－Email：2019212804＠163．sufe．edu．cn

What is Big Data?

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets
- In popular media, it is sometimes synonym of machine learning with large training datasets

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets
- In popular media, it is sometimes synonym of machine learning with large training datasets
- Applications include:

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets
- In popular media, it is sometimes synonym of machine learning with large training datasets
- Applications include:
- Retail and wholesale trade

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets
- In popular media, it is sometimes synonym of machine learning with large training datasets
- Applications include:
- Retail and wholesale trade
- Banking and securities

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets
- In popular media, it is sometimes synonym of machine learning with large training datasets
- Applications include:
- Retail and wholesale trade
- Banking and securities
- Communications, media and entertainment

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets
- In popular media, it is sometimes synonym of machine learning with large training datasets
- Applications include:
- Retail and wholesale trade
- Banking and securities
- Communications, media and entertainment
- Healthcare

What is Big Data?

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets
- In popular media, it is sometimes synonym of machine learning with large training datasets
- Applications include:

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets
- In popular media, it is sometimes synonym of machine learning with large training datasets
- Applications include:
- Insurance

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets
- In popular media, it is sometimes synonym of machine learning with large training datasets
- Applications include:
- Insurance
- Government

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets
- In popular media, it is sometimes synonym of machine learning with large training datasets
- Applications include:
- Insurance
- Government
- Scientific research

What is Big Data?

- Broadly speaking, big data is simply exceptionally large datasets
- In popular media, it is sometimes synonym of machine learning with large training datasets
- Applications include:
- Insurance
- Government
- Scientific research
- Transportation...

Focus of this course

Focus of this course

- This course focuses on basic operations on such datasets, such as

Focus of this course

- This course focuses on basic operations on such datasets, such as
- Accessing and storing such datasets

Focus of this course

- This course focuses on basic operations on such datasets, such as
- Accessing and storing such datasets
- Estimating simple statistics

Focus of this course

- This course focuses on basic operations on such datasets, such as
- Accessing and storing such datasets
- Estimating simple statistics
- Extracting meaningful sketches to be used by upper level applications

Focus of this course

- This course focuses on basic operations on such datasets, such as
- Accessing and storing such datasets
- Estimating simple statistics
- Extracting meaningful sketches to be used by upper level applications
- We do not look at upper level applications such as learning

Focus of this course

- This course focuses on basic operations on such datasets, such as
- Accessing and storing such datasets
- Estimating simple statistics
- Extracting meaningful sketches to be used by upper level applications
- We do not look at upper level applications such as learning
- For that you should take machine learning or statistical learning theory (the latter not offered this year)

(Tentative) Syllabus

(Tentative) Syllabus

- Review of basic probability theory

(Tentative) Syllabus

- Review of basic probability theory
- Hashing

(Tentative) Syllabus

- Review of basic probability theory
- Hashing
- Search trees

(Tentative) Syllabus

- Review of basic probability theory
- Hashing
- Search trees
- Concentration Inequalities

(Tentative) Syllabus

- Review of basic probability theory
- Hashing
- Search trees
- Concentration Inequalities
- More randomized data structures

(Tentative) Syllabus

- Review of basic probability theory
- Hashing
- Search trees
- Concentration Inequalities
- More randomized data structures
- Dimensionality Reductions

(Tentative) Syllabus

- Review of basic probability theory
- Hashing
- Search trees
- Concentration Inequalities
- More randomized data structures
- Dimensionality Reductions
- Streaming Algorithms

Coursework

Coursework

- Homework:

Coursework

- Homework:
- Students are encouraged to work in groups of up to 3 people

Coursework

- Homework:
- Students are encouraged to work in groups of up to 3 people
- Everyone should be able to explain the solutions turned in

Coursework

- Homework:
- Students are encouraged to work in groups of up to 3 people
- Everyone should be able to explain the solutions turned in
- Typesetting your solutions is highly encouraged

Coursework

- Homework:
- Students are encouraged to work in groups of up to 3 people
- Everyone should be able to explain the solutions turned in
- Typesetting your solutions is highly encouraged
- Project: literature survey on a chosen topic (I can provide candidate topics)

Coursework

- Homework:
- Students are encouraged to work in groups of up to 3 people
- Everyone should be able to explain the solutions turned in
- Typesetting your solutions is highly encouraged
- Project: literature survey on a chosen topic (I can provide candidate topics)
- Done in groups of up to 4 people

Coursework

- Homework:
- Students are encouraged to work in groups of up to 3 people
- Everyone should be able to explain the solutions turned in
- Typesetting your solutions is highly encouraged
- Project: literature survey on a chosen topic (I can provide candidate topics)
- Done in groups of up to 4 people
- Presentation at the end of the semester

Coursework

- Homework:
- Students are encouraged to work in groups of up to 3 people
- Everyone should be able to explain the solutions turned in
- Typesetting your solutions is highly encouraged
- Project: literature survey on a chosen topic (I can provide candidate topics)
- Done in groups of up to 4 people
- Presentation at the end of the semester
- Take-home final: 1-3 days' work, done independently. Time TBD

Coursework

- Homework:
- Students are encouraged to work in groups of up to 3 people
- Everyone should be able to explain the solutions turned in
- Typesetting your solutions is highly encouraged
- Project: literature survey on a chosen topic (I can provide candidate topics)
- Done in groups of up to 4 people
- Presentation at the end of the semester
- Take-home final: 1-3 days' work, done independently. Time TBD
- Grade makeup: 40% homework + 20\% project + 40\% final

Prerequisites

Prerequisites

- We will assume basic familiarity of data structures and algorithms

Prerequisites

- We will assume basic familiarity of data structures and algorithms
- At the very least, you should have some rough idea on how computer programs work

Prerequisites

- We will assume basic familiarity of data structures and algorithms
- At the very least, you should have some rough idea on how computer programs work
- Comfort with running time analysis (e.g. familiarity with the big $O(\cdot)$ notation and worst case analysis)

Prerequisites

- We will assume basic familiarity of data structures and algorithms
- At the very least, you should have some rough idea on how computer programs work
- Comfort with running time analysis (e.g. familiarity with the big $O(\cdot)$ notation and worst case analysis)
- Knowledge of basic data structures. We will use arrays, linked lists, trees.

Prerequisites

- We will assume basic familiarity of data structures and algorithms
- At the very least, you should have some rough idea on how computer programs work
- Comfort with running time analysis (e.g. familiarity with the big $O(\cdot)$ notation and worst case analysis)
- Knowledge of basic data structures. We will use arrays, linked lists, trees.
- Comfort with basic probability theory will go a long way, but is not strictly required. We start with a quick review.

This is a Theory course

This is a Theory course

- All materials are proof-based, and so is the homework

This is a Theory course

- All materials are proof-based, and so is the homework
- Implementation of algorithms is not required; coding things up may help with understanding

This is a Theory course

- All materials are proof-based, and so is the homework
- Implementation of algorithms is not required; coding things up may help with understanding
- Mathematical maturity helps

This is a Theory course

- All materials are proof-based, and so is the homework
- Implementation of algorithms is not required; coding things up may help with understanding
- Mathematical maturity helps
- Grasping the mathematical essence is often more important than the "knowledge"

This is a Theory course

- All materials are proof-based, and so is the homework
- Implementation of algorithms is not required; coding things up may help with understanding
- Mathematical maturity helps
- Grasping the mathematical essence is often more important than the "knowledge"
- Ideas, intuitions, tricks, facts

A Brain Teaser

A Brain Teaser

- The following problem gives you a taste of streaming algorithms

A Brain Teaser

- The following problem gives you a taste of streaming algorithms
- Say you have a very large array of size n, each containing a URL. Strictly more than half of them have the same content. Design an algorithm to find out this URL.

A Brain Teaser

- The following problem gives you a taste of streaming algorithms
- Say you have a very large array of size n, each containing a URL. Strictly more than half of them have the same content. Design an algorithm to find out this URL.
- Your algorithm must run in linear time $(O(n)$ time $)$

A Brain Teaser

- The following problem gives you a taste of streaming algorithms
- Say you have a very large array of size n, each containing a URL. Strictly more than half of them have the same content. Design an algorithm to find out this URL.
- Your algorithm must run in linear time ($O(n)$ time)
- Better still, go over the array only once

A Brain Teaser

- The following problem gives you a taste of streaming algorithms
- Say you have a very large array of size n, each containing a URL. Strictly more than half of them have the same content. Design an algorithm to find out this URL.
- Your algorithm must run in linear time ($O(n)$ time)
- Better still, go over the array only once
- You have only $O(1)$ additional memory

One Solution

- Use the external memory to remember: a URL (initiated to empty) and a counter (initiated to 0).
- Go over the array. At each new entry, do the following:
- If the counter is 0 , copy the current entry's URL to the stored content, and set the counter to 1
- Otherwise, compare the current entry's content and the stored content
- If they are the same, counter++; otherwise counter--
- At the end, output the stored URL.

Extensions

- What if there are at most k URL's, each appearing in strictly more than $\frac{1}{k+1}$ fraction of the entries, for some $k \geq 2$? Can you design an algorithm that finds them all out, in linear time and with $O(1)$ memory?
- Such entries are called heavy hitters.

