
Universal Hashing

Learning Goals

Understand the desiderata of hashing
State the guarantee of universal hashing
Understand the construction of universal hashing using finite fields

September 18, 2021 1 / 10

Universal Hashing

The Fundamental Data-Structuring Problem

A data structure is a way to store and organize data so that it can be
used efficiently.

We have a set S of entries to store. Denote |S | by n.
Each entry i has a key k(i) belonging to a universe U.

For student records, the key can be the student numbers.
For webpages, the key can be the URLs.

Basic operations we’d like to support:
Find(k): given key value k, decide whether any entry in S has that
key, and if so, return a handle/pointer to the entry.
Insert((k(i), i): insert entry i with key value k(i) to the current data
set.

There may be other operations such as , Delete, Merge,
Traverse, etc..

September 18, 2021 2 / 10

Universal Hashing

The Fundamental Data-Structuring Problem

A data structure is a way to store and organize data so that it can be
used efficiently.
We have a set S of entries to store. Denote |S | by n.

Each entry i has a key k(i) belonging to a universe U.
For student records, the key can be the student numbers.
For webpages, the key can be the URLs.

Basic operations we’d like to support:
Find(k): given key value k, decide whether any entry in S has that
key, and if so, return a handle/pointer to the entry.
Insert((k(i), i): insert entry i with key value k(i) to the current data
set.

There may be other operations such as , Delete, Merge,
Traverse, etc..

September 18, 2021 2 / 10

Universal Hashing

The Fundamental Data-Structuring Problem

A data structure is a way to store and organize data so that it can be
used efficiently.
We have a set S of entries to store. Denote |S | by n.
Each entry i has a key k(i) belonging to a universe U.

For student records, the key can be the student numbers.
For webpages, the key can be the URLs.

Basic operations we’d like to support:
Find(k): given key value k, decide whether any entry in S has that
key, and if so, return a handle/pointer to the entry.
Insert((k(i), i): insert entry i with key value k(i) to the current data
set.

There may be other operations such as , Delete, Merge,
Traverse, etc..

September 18, 2021 2 / 10

Universal Hashing

The Fundamental Data-Structuring Problem

A data structure is a way to store and organize data so that it can be
used efficiently.
We have a set S of entries to store. Denote |S | by n.
Each entry i has a key k(i) belonging to a universe U.

For student records, the key can be the student numbers.

For webpages, the key can be the URLs.

Basic operations we’d like to support:
Find(k): given key value k, decide whether any entry in S has that
key, and if so, return a handle/pointer to the entry.
Insert((k(i), i): insert entry i with key value k(i) to the current data
set.

There may be other operations such as , Delete, Merge,
Traverse, etc..

September 18, 2021 2 / 10

Universal Hashing

The Fundamental Data-Structuring Problem

A data structure is a way to store and organize data so that it can be
used efficiently.
We have a set S of entries to store. Denote |S | by n.
Each entry i has a key k(i) belonging to a universe U.

For student records, the key can be the student numbers.
For webpages, the key can be the URLs.

Basic operations we’d like to support:
Find(k): given key value k, decide whether any entry in S has that
key, and if so, return a handle/pointer to the entry.
Insert((k(i), i): insert entry i with key value k(i) to the current data
set.

There may be other operations such as , Delete, Merge,
Traverse, etc..

September 18, 2021 2 / 10

Universal Hashing

The Fundamental Data-Structuring Problem

A data structure is a way to store and organize data so that it can be
used efficiently.
We have a set S of entries to store. Denote |S | by n.
Each entry i has a key k(i) belonging to a universe U.

For student records, the key can be the student numbers.
For webpages, the key can be the URLs.

Basic operations we’d like to support:
Find(k): given key value k , decide whether any entry in S has that
key, and if so, return a handle/pointer to the entry.

Insert((k(i), i): insert entry i with key value k(i) to the current data
set.

There may be other operations such as , Delete, Merge,
Traverse, etc..

September 18, 2021 2 / 10

Universal Hashing

The Fundamental Data-Structuring Problem

A data structure is a way to store and organize data so that it can be
used efficiently.
We have a set S of entries to store. Denote |S | by n.
Each entry i has a key k(i) belonging to a universe U.

For student records, the key can be the student numbers.
For webpages, the key can be the URLs.

Basic operations we’d like to support:
Find(k): given key value k , decide whether any entry in S has that
key, and if so, return a handle/pointer to the entry.
Insert((k(i), i): insert entry i with key value k(i) to the current data
set.

There may be other operations such as , Delete, Merge,
Traverse, etc..

September 18, 2021 2 / 10

Universal Hashing

The Fundamental Data-Structuring Problem

A data structure is a way to store and organize data so that it can be
used efficiently.
We have a set S of entries to store. Denote |S | by n.
Each entry i has a key k(i) belonging to a universe U.

For student records, the key can be the student numbers.
For webpages, the key can be the URLs.

Basic operations we’d like to support:
Find(k): given key value k , decide whether any entry in S has that
key, and if so, return a handle/pointer to the entry.
Insert((k(i), i): insert entry i with key value k(i) to the current data
set.

There may be other operations such as , Delete, Merge,
Traverse, etc..

September 18, 2021 2 / 10

Universal Hashing

Scenario for hashing

The choice of a data structure depends on the scenario.

When we talk about data structures, we are almost exclusively
interested in the keys (and not the contents) of the entries, so we will
make no distinction between an entry and its key, and refer to entry i
as if it is also its key.
A typical scenario is when U is very large, but the number of entries
is much smaller, i.e., |S | � |U|.

Example: when U is the set of all URLs.

Opening an array for all possible key values is wasteful and often
impractical.
Using a linked list means very slow (linear time) Find operation.

September 18, 2021 3 / 10

Universal Hashing

Scenario for hashing

The choice of a data structure depends on the scenario.
When we talk about data structures, we are almost exclusively
interested in the keys (and not the contents) of the entries, so we will
make no distinction between an entry and its key, and refer to entry i
as if it is also its key.

A typical scenario is when U is very large, but the number of entries
is much smaller, i.e., |S | � |U|.

Example: when U is the set of all URLs.

Opening an array for all possible key values is wasteful and often
impractical.
Using a linked list means very slow (linear time) Find operation.

September 18, 2021 3 / 10

Universal Hashing

Scenario for hashing

The choice of a data structure depends on the scenario.
When we talk about data structures, we are almost exclusively
interested in the keys (and not the contents) of the entries, so we will
make no distinction between an entry and its key, and refer to entry i
as if it is also its key.
A typical scenario is when U is very large, but the number of entries
is much smaller, i.e., |S | � |U|.

Example: when U is the set of all URLs.

Opening an array for all possible key values is wasteful and often
impractical.
Using a linked list means very slow (linear time) Find operation.

September 18, 2021 3 / 10

Universal Hashing

Scenario for hashing

The choice of a data structure depends on the scenario.
When we talk about data structures, we are almost exclusively
interested in the keys (and not the contents) of the entries, so we will
make no distinction between an entry and its key, and refer to entry i
as if it is also its key.
A typical scenario is when U is very large, but the number of entries
is much smaller, i.e., |S | � |U|.

Example: when U is the set of all URLs.

Opening an array for all possible key values is wasteful and often
impractical.

Using a linked list means very slow (linear time) Find operation.

September 18, 2021 3 / 10

Universal Hashing

Scenario for hashing

The choice of a data structure depends on the scenario.
When we talk about data structures, we are almost exclusively
interested in the keys (and not the contents) of the entries, so we will
make no distinction between an entry and its key, and refer to entry i
as if it is also its key.
A typical scenario is when U is very large, but the number of entries
is much smaller, i.e., |S | � |U|.

Example: when U is the set of all URLs.

Opening an array for all possible key values is wasteful and often
impractical.
Using a linked list means very slow (linear time) Find operation.

September 18, 2021 3 / 10

Universal Hashing

Idea of Hashing

Open an array (hash table) with size m, with m� |U|. Have a function
h : U → {0, 1, . . . ,m − 1}, and store entry i at position h(i).

Keys

www.baidu.com

www.fuhuthu.com

www.taobao.com

www.bilibili.com

Hash Function

0

1

2

3

Hashes

4

h should be computed very fast, say, in O(1) time.
Ideally m = O(n).
What if two keys are mapped to the same position? I.e., if for
x , y ∈ U, x 6= y , h(x) = h(y).

This is called a collision.

September 18, 2021 4 / 10

Universal Hashing

Idea of Hashing

Open an array (hash table) with size m, with m� |U|. Have a function
h : U → {0, 1, . . . ,m − 1}, and store entry i at position h(i).

Keys

www.baidu.com

www.fuhuthu.com

www.taobao.com

www.bilibili.com

Hash Function

0

1

2

3

Hashes

4

h should be computed very fast, say, in O(1) time.
Ideally m = O(n).
What if two keys are mapped to the same position? I.e., if for
x , y ∈ U, x 6= y , h(x) = h(y).

This is called a collision.

September 18, 2021 4 / 10

Universal Hashing

Idea of Hashing

Open an array (hash table) with size m, with m� |U|. Have a function
h : U → {0, 1, . . . ,m − 1}, and store entry i at position h(i).

Keys

www.baidu.com

www.fuhuthu.com

www.taobao.com

www.bilibili.com

Hash Function

0

1

2

3

Hashes

4

h should be computed very fast, say, in O(1) time.

Ideally m = O(n).
What if two keys are mapped to the same position? I.e., if for
x , y ∈ U, x 6= y , h(x) = h(y).

This is called a collision.

September 18, 2021 4 / 10

Universal Hashing

Idea of Hashing

Open an array (hash table) with size m, with m� |U|. Have a function
h : U → {0, 1, . . . ,m − 1}, and store entry i at position h(i).

Keys

www.baidu.com

www.fuhuthu.com

www.taobao.com

www.bilibili.com

Hash Function

0

1

2

3

Hashes

4

h should be computed very fast, say, in O(1) time.
Ideally m = O(n).

What if two keys are mapped to the same position? I.e., if for
x , y ∈ U, x 6= y , h(x) = h(y).

This is called a collision.

September 18, 2021 4 / 10

Universal Hashing

Idea of Hashing

Open an array (hash table) with size m, with m� |U|. Have a function
h : U → {0, 1, . . . ,m − 1}, and store entry i at position h(i).

Keys

www.baidu.com

www.fuhuthu.com

www.taobao.com

www.bilibili.com

Hash Function

0

1

2

3

Hashes

4

h should be computed very fast, say, in O(1) time.
Ideally m = O(n).
What if two keys are mapped to the same position? I.e., if for
x , y ∈ U, x 6= y , h(x) = h(y).

This is called a collision.

September 18, 2021 4 / 10

Universal Hashing

Idea of Hashing

Open an array (hash table) with size m, with m� |U|. Have a function
h : U → {0, 1, . . . ,m − 1}, and store entry i at position h(i).

Keys

www.baidu.com

www.fuhuthu.com

www.taobao.com

www.bilibili.com

Hash Function

0

1

2

3

Hashes

4

h should be computed very fast, say, in O(1) time.
Ideally m = O(n).
What if two keys are mapped to the same position? I.e., if for
x , y ∈ U, x 6= y , h(x) = h(y).

This is called a collision.

September 18, 2021 4 / 10

Universal Hashing

Dealing with collisions

Separate chaining: build a linked list at each entry of the hash table.

Keys

www.baidu.com

www.fuhuthu.com

www.taobao.com

www.bilibili.com

Hash Function

0

1

2

3

Hashes

4
www.wechat.com

baidu wechat

h should be computed very fast, say, in O(1) time.
Ideally m = O(n).
There should be few collisions.

September 18, 2021 5 / 10

Universal Hashing

Failed Attempts

Does there exist a particularly good function h?

Proposition

For any given function h : U → {0, 1, . . . ,m − 1}, if |U| ≥ (n − 1)m + 1,
then there exists S ⊆ U, with |S | = n, whose elements are mapped to the
same position by h.

Let h be a function that maps any key to a position uniformly at
random?

How do you keep the record of h and access that record? We are back
to where we started!
This amounts to choosing at random from a family of m|U| hash
function.

September 18, 2021 6 / 10

Universal Hashing

Failed Attempts

Does there exist a particularly good function h?

Proposition

For any given function h : U → {0, 1, . . . ,m − 1}, if |U| ≥ (n − 1)m + 1,
then there exists S ⊆ U, with |S | = n, whose elements are mapped to the
same position by h.

Let h be a function that maps any key to a position uniformly at
random?

How do you keep the record of h and access that record? We are back
to where we started!
This amounts to choosing at random from a family of m|U| hash
function.

September 18, 2021 6 / 10

Universal Hashing

Failed Attempts

Does there exist a particularly good function h?

Proposition

For any given function h : U → {0, 1, . . . ,m − 1}, if |U| ≥ (n − 1)m + 1,
then there exists S ⊆ U, with |S | = n, whose elements are mapped to the
same position by h.

Let h be a function that maps any key to a position uniformly at
random?

How do you keep the record of h and access that record? We are back
to where we started!
This amounts to choosing at random from a family of m|U| hash
function.

September 18, 2021 6 / 10

Universal Hashing

Failed Attempts

Does there exist a particularly good function h?

Proposition

For any given function h : U → {0, 1, . . . ,m − 1}, if |U| ≥ (n − 1)m + 1,
then there exists S ⊆ U, with |S | = n, whose elements are mapped to the
same position by h.

Let h be a function that maps any key to a position uniformly at
random?

How do you keep the record of h and access that record? We are back
to where we started!

This amounts to choosing at random from a family of m|U| hash
function.

September 18, 2021 6 / 10

Universal Hashing

Failed Attempts

Does there exist a particularly good function h?

Proposition

For any given function h : U → {0, 1, . . . ,m − 1}, if |U| ≥ (n − 1)m + 1,
then there exists S ⊆ U, with |S | = n, whose elements are mapped to the
same position by h.

Let h be a function that maps any key to a position uniformly at
random?

How do you keep the record of h and access that record? We are back
to where we started!
This amounts to choosing at random from a family of m|U| hash
function.

September 18, 2021 6 / 10

Universal Hashing

Universal Hashing

It may suffice to keep a much smaller family H of hash functions and
choose one at random.

Each function in H should be easy to remember and compute.
A sample from H should look “random enough”.

Definition
A family H of hash functions is universal if for any x 6= y in U,

Prh←H [h(x) = h(y)] ≤ 1
m
,

where h← H means h is sampled from H uniformly at random.

Remark
The property is not assuming the keys are themselves randomly chosen
from U! This is still worst case guarantee.

September 18, 2021 7 / 10

Universal Hashing

Universal Hashing

It may suffice to keep a much smaller family H of hash functions and
choose one at random.
Each function in H should be easy to remember and compute.

A sample from H should look “random enough”.

Definition
A family H of hash functions is universal if for any x 6= y in U,

Prh←H [h(x) = h(y)] ≤ 1
m
,

where h← H means h is sampled from H uniformly at random.

Remark
The property is not assuming the keys are themselves randomly chosen
from U! This is still worst case guarantee.

September 18, 2021 7 / 10

Universal Hashing

Universal Hashing

It may suffice to keep a much smaller family H of hash functions and
choose one at random.
Each function in H should be easy to remember and compute.
A sample from H should look “random enough”.

Definition
A family H of hash functions is universal if for any x 6= y in U,

Prh←H [h(x) = h(y)] ≤ 1
m
,

where h← H means h is sampled from H uniformly at random.

Remark
The property is not assuming the keys are themselves randomly chosen
from U! This is still worst case guarantee.

September 18, 2021 7 / 10

Universal Hashing

Universal Hashing

It may suffice to keep a much smaller family H of hash functions and
choose one at random.
Each function in H should be easy to remember and compute.
A sample from H should look “random enough”.

Definition
A family H of hash functions is universal if for any x 6= y in U,

Prh←H [h(x) = h(y)] ≤ 1
m
,

where h← H means h is sampled from H uniformly at random.

Remark
The property is not assuming the keys are themselves randomly chosen
from U! This is still worst case guarantee.

September 18, 2021 7 / 10

Universal Hashing

Universal Hashing

It may suffice to keep a much smaller family H of hash functions and
choose one at random.
Each function in H should be easy to remember and compute.
A sample from H should look “random enough”.

Definition
A family H of hash functions is universal if for any x 6= y in U,

Prh←H [h(x) = h(y)] ≤ 1
m
,

where h← H means h is sampled from H uniformly at random.

Remark
The property is not assuming the keys are themselves randomly chosen
from U! This is still worst case guarantee.

September 18, 2021 7 / 10

Universal Hashing

Guarantees of Universal Hashgin

Proposition

Let H be a universal hash functions family from U to {0, . . . ,m − 1} and
let h be a hash function uniformly sampled from H. For any set S ⊆ U
with |S | = n and any x ∈ S , the expected number of collisions of x
under h is at most n/m.

Proof.
For x 6= y in S , let Ixy be the indicator variable for the event that
h(x) = h(y), then E[Ixy] = Pr[h(x) = h(y)] ≤ 1

m .
The expected number of collisions is E[

∑
y∈S\{x} Ixy] ≤ n

m .

As long as m = Ω(n), the expected number of collisions is O(1).
Total time for Find is O(1).

September 18, 2021 8 / 10

Universal Hashing

Guarantees of Universal Hashgin

Proposition

Let H be a universal hash functions family from U to {0, . . . ,m − 1} and
let h be a hash function uniformly sampled from H. For any set S ⊆ U
with |S | = n and any x ∈ S , the expected number of collisions of x
under h is at most n/m.

Proof.
For x 6= y in S , let Ixy be the indicator variable for the event that
h(x) = h(y), then E[Ixy] = Pr[h(x) = h(y)] ≤ 1

m .

The expected number of collisions is E[
∑

y∈S\{x} Ixy] ≤ n
m .

As long as m = Ω(n), the expected number of collisions is O(1).
Total time for Find is O(1).

September 18, 2021 8 / 10

Universal Hashing

Guarantees of Universal Hashgin

Proposition

Let H be a universal hash functions family from U to {0, . . . ,m − 1} and
let h be a hash function uniformly sampled from H. For any set S ⊆ U
with |S | = n and any x ∈ S , the expected number of collisions of x
under h is at most n/m.

Proof.
For x 6= y in S , let Ixy be the indicator variable for the event that
h(x) = h(y), then E[Ixy] = Pr[h(x) = h(y)] ≤ 1

m .
The expected number of collisions is E[

∑
y∈S\{x} Ixy] ≤ n

m .

As long as m = Ω(n), the expected number of collisions is O(1).
Total time for Find is O(1).

September 18, 2021 8 / 10

Universal Hashing

Guarantees of Universal Hashgin

Proposition

Let H be a universal hash functions family from U to {0, . . . ,m − 1} and
let h be a hash function uniformly sampled from H. For any set S ⊆ U
with |S | = n and any x ∈ S , the expected number of collisions of x
under h is at most n/m.

Proof.
For x 6= y in S , let Ixy be the indicator variable for the event that
h(x) = h(y), then E[Ixy] = Pr[h(x) = h(y)] ≤ 1

m .
The expected number of collisions is E[

∑
y∈S\{x} Ixy] ≤ n

m .

As long as m = Ω(n), the expected number of collisions is O(1).
Total time for Find is O(1).

September 18, 2021 8 / 10

Universal Hashing

Construction of Universal Hashing Families

We introduce a popular construction for universal hashing function
families.

Let m be a prime number.

Fact
For any integer N ≥ 2, there is a prime number in {N,N + 1, · · · , 2N − 1}.

Suppose each key x is a vector of k integers (x1, . . . , xk), for
xi ∈ {0, . . . ,m − 1}, i.e., U = {0, . . . ,m − 1}k .
Each hash function H is indexed by a string of k random numbers
r = (r1, . . . , rk) ∈ {0, . . . ,m − 1}k , denoted as hr.

∀x ∈ U, hr(x) := r1x1 + . . . + rkxk mod m.

September 18, 2021 9 / 10

Universal Hashing

Construction of Universal Hashing Families

We introduce a popular construction for universal hashing function
families.
Let m be a prime number.

Fact
For any integer N ≥ 2, there is a prime number in {N,N + 1, · · · , 2N − 1}.

Suppose each key x is a vector of k integers (x1, . . . , xk), for
xi ∈ {0, . . . ,m − 1}, i.e., U = {0, . . . ,m − 1}k .
Each hash function H is indexed by a string of k random numbers
r = (r1, . . . , rk) ∈ {0, . . . ,m − 1}k , denoted as hr.

∀x ∈ U, hr(x) := r1x1 + . . . + rkxk mod m.

September 18, 2021 9 / 10

Universal Hashing

Construction of Universal Hashing Families

We introduce a popular construction for universal hashing function
families.
Let m be a prime number.

Fact
For any integer N ≥ 2, there is a prime number in {N,N + 1, · · · , 2N − 1}.

Suppose each key x is a vector of k integers (x1, . . . , xk), for
xi ∈ {0, . . . ,m − 1}, i.e., U = {0, . . . ,m − 1}k .
Each hash function H is indexed by a string of k random numbers
r = (r1, . . . , rk) ∈ {0, . . . ,m − 1}k , denoted as hr.

∀x ∈ U, hr(x) := r1x1 + . . . + rkxk mod m.

September 18, 2021 9 / 10

Universal Hashing

Construction of Universal Hashing Families

We introduce a popular construction for universal hashing function
families.
Let m be a prime number.

Fact
For any integer N ≥ 2, there is a prime number in {N,N + 1, · · · , 2N − 1}.

Suppose each key x is a vector of k integers (x1, . . . , xk), for
xi ∈ {0, . . . ,m − 1}, i.e., U = {0, . . . ,m − 1}k .

Each hash function H is indexed by a string of k random numbers
r = (r1, . . . , rk) ∈ {0, . . . ,m − 1}k , denoted as hr.

∀x ∈ U, hr(x) := r1x1 + . . . + rkxk mod m.

September 18, 2021 9 / 10

Universal Hashing

Construction of Universal Hashing Families

We introduce a popular construction for universal hashing function
families.
Let m be a prime number.

Fact
For any integer N ≥ 2, there is a prime number in {N,N + 1, · · · , 2N − 1}.

Suppose each key x is a vector of k integers (x1, . . . , xk), for
xi ∈ {0, . . . ,m − 1}, i.e., U = {0, . . . ,m − 1}k .
Each hash function H is indexed by a string of k random numbers
r = (r1, . . . , rk) ∈ {0, . . . ,m − 1}k , denoted as hr.

∀x ∈ U, hr(x) := r1x1 + . . . + rkxk mod m.

September 18, 2021 9 / 10

Universal Hashing

Construction of Universal Hashing Families

We introduce a popular construction for universal hashing function
families.
Let m be a prime number.

Fact
For any integer N ≥ 2, there is a prime number in {N,N + 1, · · · , 2N − 1}.

Suppose each key x is a vector of k integers (x1, . . . , xk), for
xi ∈ {0, . . . ,m − 1}, i.e., U = {0, . . . ,m − 1}k .
Each hash function H is indexed by a string of k random numbers
r = (r1, . . . , rk) ∈ {0, . . . ,m − 1}k , denoted as hr.

∀x ∈ U, hr(x) := r1x1 + . . . + rkxk mod m.

September 18, 2021 9 / 10

Universal Hashing

Proof of Universality

Theorem
The family of hash functions thus constructed is universal.

Proof.
By definition, we need to show, for any x 6= y in U,
Prhr [hr(x) = hr(y)] ≤ 1

m .
Since x 6= y , there exists i ∈ {1, · · · , k} such that xi 6= yi .
In order for hr(x) = hr(y), we must have

(xi − yi)ri ≡
∑
j 6=i

(yj − xj)rj mod m. (1)

For any choice of r1, . . . , ri−1, ri+1, . . . , rk , there is a unique ri that
solves (1). With probability 1/m, ri is chosen to be that.

September 18, 2021 10 / 10

Universal Hashing

Proof of Universality

Theorem
The family of hash functions thus constructed is universal.

Proof.
By definition, we need to show, for any x 6= y in U,
Prhr [hr(x) = hr(y)] ≤ 1

m .

Since x 6= y , there exists i ∈ {1, · · · , k} such that xi 6= yi .
In order for hr(x) = hr(y), we must have

(xi − yi)ri ≡
∑
j 6=i

(yj − xj)rj mod m. (1)

For any choice of r1, . . . , ri−1, ri+1, . . . , rk , there is a unique ri that
solves (1). With probability 1/m, ri is chosen to be that.

September 18, 2021 10 / 10

Universal Hashing

Proof of Universality

Theorem
The family of hash functions thus constructed is universal.

Proof.
By definition, we need to show, for any x 6= y in U,
Prhr [hr(x) = hr(y)] ≤ 1

m .
Since x 6= y , there exists i ∈ {1, · · · , k} such that xi 6= yi .

In order for hr(x) = hr(y), we must have

(xi − yi)ri ≡
∑
j 6=i

(yj − xj)rj mod m. (1)

For any choice of r1, . . . , ri−1, ri+1, . . . , rk , there is a unique ri that
solves (1). With probability 1/m, ri is chosen to be that.

September 18, 2021 10 / 10

Universal Hashing

Proof of Universality

Theorem
The family of hash functions thus constructed is universal.

Proof.
By definition, we need to show, for any x 6= y in U,
Prhr [hr(x) = hr(y)] ≤ 1

m .
Since x 6= y , there exists i ∈ {1, · · · , k} such that xi 6= yi .
In order for hr(x) = hr(y), we must have

(xi − yi)ri ≡
∑
j 6=i

(yj − xj)rj mod m. (1)

For any choice of r1, . . . , ri−1, ri+1, . . . , rk , there is a unique ri that
solves (1). With probability 1/m, ri is chosen to be that.

September 18, 2021 10 / 10

Universal Hashing

Proof of Universality

Theorem
The family of hash functions thus constructed is universal.

Proof.
By definition, we need to show, for any x 6= y in U,
Prhr [hr(x) = hr(y)] ≤ 1

m .
Since x 6= y , there exists i ∈ {1, · · · , k} such that xi 6= yi .
In order for hr(x) = hr(y), we must have

(xi − yi)ri ≡
∑
j 6=i

(yj − xj)rj mod m. (1)

For any choice of r1, . . . , ri−1, ri+1, . . . , rk , there is a unique ri that
solves (1). With probability 1/m, ri is chosen to be that.

September 18, 2021 10 / 10

	Universal Hashing

