Distinct Elements

• We are back to our basic streaming model:

$$i_1, \ldots, i_n \in [d] = \{1, \cdots, d\}.$$

• The frequency vector $x \in \mathbb{Z}^d$: $x_i = |\{t : i_t = j\}|$.

Distinct Elements

• We are back to our basic streaming model:

$$i_1,\ldots,i_n\in[d]=\{1,\cdots,d\}.$$

- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- Counting distinct elements: estimate $||x||_0 := |j: x_j > 0|$ precise up to $(1 + \epsilon)$ -factor.

Distinct Elements

- We are back to our basic streaming model: $i_1, \ldots, i_n \in [d] = \{1, \cdots, d\}.$
- The frequency vector $x \in \mathbb{Z}^d$: $x_i = |\{t : i_t = j\}|$.
- Counting distinct elements: estimate $||x||_0 := |j: x_j > 0|$ precise up to $(1 + \epsilon)$ -factor.
- Again, we must use space $O(\log d, \frac{1}{\epsilon})$.

• If we can make the distribution of $\{i_t\}$ uniform, then it is easier to estimate its size.

- If we can make the distribution of $\{i_t\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h(i_t)$, then $\frac{1}{X}$ seems a reasonable estimate.

- If we can make the distribution of $\{i_t\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h(i_t)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_1, \dots, X_ℓ uniformly distributed on [0, 1], let the smallest be $X_{(1)}$.

- If we can make the distribution of $\{i_t\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h(i_t)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_1, \dots, X_ℓ uniformly distributed on [0, 1], let the smallest be $X_{(1)}$.
 - $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called *order statistics*.

- If we can make the distribution of $\{i_t\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h(i_t)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_1, \dots, X_ℓ uniformly distributed on [0, 1], let the smallest be $X_{(1)}$.
 - $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called *order statistics*.
 - The distribution of $X_{(1)}$ satisfies Beta distribution $B(1, \ell)$. We have $\mathbf{E}[X_{(1)}] = \frac{1}{\ell+1}$.
- Therefore, $\frac{1}{X} 1$ is an unbiased estimator of $||x||_0$.

- If we can make the distribution of $\{i_t\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h(i_t)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_1, \dots, X_ℓ uniformly distributed on [0, 1], let the smallest be $X_{(1)}$.
 - $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called *order statistics*.
 - The distribution of $X_{(1)}$ satisfies Beta distribution $B(1, \ell)$. We have $\mathbf{E}[X_{(1)}] = \frac{1}{\ell+1}$.
- Therefore, $\frac{1}{X} 1$ is an unbiased estimator of $||x||_0$.
- $Var[X_{(1)}] = \frac{\ell}{(\ell+1)^2(\ell+2)} \le \frac{1}{(\ell+1)^2}$.

- If we can make the distribution of $\{i_t\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h(i_t)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_1, \dots, X_ℓ uniformly distributed on [0, 1], let the smallest be $X_{(1)}$.
 - $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called *order statistics*.
 - The distribution of $X_{(1)}$ satisfies Beta distribution $B(1, \ell)$. We have $\mathbf{E}[X_{(1)}] = \frac{1}{\ell+1}$.
- Therefore, $\frac{1}{X} 1$ is an unbiased estimator of $||x||_0$.
- $\operatorname{Var}[X_{(1)}] = \frac{\ell}{(\ell+1)^2(\ell+2)} \le \frac{1}{(\ell+1)^2}$.
- We can apply the Chebyshev bound, although the variance is a bit too large for our purpose.

• Taking the average of $O(\frac{1}{\epsilon^2})$ independent trials, the estimate of the minimum hash value is within $(1 \pm \epsilon)$ of $\frac{1}{||x||_0 + 1}$ with constant probability.

- Taking the average of $O(\frac{1}{\epsilon^2})$ independent trials, the estimate of the minimum hash value is within $(1 \pm \epsilon)$ of $\frac{1}{||x||_0 + 1}$ with constant probability.
- The median trick again: repeating this $O(\log \frac{1}{\delta})$ times and taking the median, we succeed with probability 1δ .

- Taking the average of $O(\frac{1}{\epsilon^2})$ independent trials, the estimate of the minimum hash value is within $(1 \pm \epsilon)$ of $\frac{1}{||x||_0 + 1}$ with constant probability.
- The median trick again: repeating this $O(\log \frac{1}{\delta})$ times and taking the median, we succeed with probability 1δ .
- This algorithm is due to Flajolet and Martin (1985).

- Taking the average of $O(\frac{1}{\epsilon^2})$ independent trials, the estimate of the minimum hash value is within $(1 \pm \epsilon)$ of $\frac{1}{||x||_0 + 1}$ with constant probability.
- The median trick again: repeating this $O(\log \frac{1}{\delta})$ times and taking the median, we succeed with probability 1δ .
- This algorithm is due to Flajolet and Martin (1985).
- It assumes we have access to ideal hash functions.

- Taking the average of $O(\frac{1}{\epsilon^2})$ independent trials, the estimate of the minimum hash value is within $(1 \pm \epsilon)$ of $\frac{1}{||x||_0+1}$ with constant probability.
- The median trick again: repeating this $O(\log \frac{1}{\delta})$ times and taking the median, we succeed with probability 1δ .
- This algorithm is due to Flajolet and Martin (1985).
- It assumes we have access to ideal hash functions.
- Ideas for improvement:
 - Use real hash functions. Discretize the range. Possibly use *k*-wise independent hash family for appropriate *k*.

- Taking the average of $O(\frac{1}{\epsilon^2})$ independent trials, the estimate of the minimum hash value is within $(1 \pm \epsilon)$ of $\frac{1}{||x||_0+1}$ with constant probability.
- The median trick again: repeating this $O(\log \frac{1}{\delta})$ times and taking the median, we succeed with probability 1δ .
- This algorithm is due to Flajolet and Martin (1985).
- It assumes we have access to ideal hash functions.
- Ideas for improvement:
 - Use real hash functions. Discretize the range. Possibly use *k*-wise independent hash family for appropriate *k*.
 - The minimum of $h(i_t)$ tends to be voltaile: a single bad event ruins the estimate.

- Taking the average of $O(\frac{1}{\epsilon^2})$ independent trials, the estimate of the minimum hash value is within $(1 \pm \epsilon)$ of $\frac{1}{||x||_0+1}$ with constant probability.
- The median trick again: repeating this $O(\log \frac{1}{\delta})$ times and taking the median, we succeed with probability 1δ .
- This algorithm is due to Flajolet and Martin (1985).
- It assumes we have access to ideal hash functions.
- Ideas for improvement:
 - Use real hash functions. Discretize the range. Possibly use *k*-wise independent hash family for appropriate *k*.
 - The minimum of $h(i_t)$ tends to be voltaile: a single bad event ruins the estimate.
 - To make the estimate more stable, we may keep track of the t > 1 minimum hash values.

The following KMV (*k* minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

• Sample a hash function h from a pairwise independent hash family mapping [d] to [D], for $D \in [d^3, 2d^3]$ that is a power of 2.

- Sample a hash function h from a pairwise independent hash family mapping [d] to [D], for $D \in [d^3, 2d^3]$ that is a power of 2.
- Initialize S to \emptyset . Set $t = 12/\delta \epsilon^2$.

- Sample a hash function h from a pairwise independent hash family mapping [d] to [D], for $D \in [d^3, 2d^3]$ that is a power of 2.
- Initialize S to \emptyset . Set $t = 12/\delta \epsilon^2$.
- When i_i arrives, add $h(i_i)$ to S if
 - If |S| < t, then add $h(i_j)$ to S;
 - Otherwise, if $h(i_j) < y, \forall y \in S$, then replace the largest element of S by $h(i_j)$.

- Sample a hash function h from a pairwise independent hash family mapping [d] to [D], for $D \in [d^3, 2d^3]$ that is a power of 2.
- Initialize S to \emptyset . Set $t = 12/\delta \epsilon^2$.
- When i_i arrives, add $h(i_i)$ to S if
 - If |S| < t, then add $h(i_i)$ to S;
 - Otherwise, if $h(i_j) < y, \forall y \in S$, then replace the largest element of S by $h(i_j)$.
- For output at the end:
 - If |S| < t, return |S|.

- Sample a hash function h from a pairwise independent hash family mapping [d] to [D], for $D \in [d^3, 2d^3]$ that is a power of 2.
- Initialize S to \emptyset . Set $t = 12/\delta \epsilon^2$.
- When i_i arrives, add $h(i_i)$ to S if
 - If |S| < t, then add $h(i_i)$ to S;
 - Otherwise, if $h(i_j) < y, \forall y \in S$, then replace the largest element of S by $h(i_j)$.
- For output at the end:
 - If |S| < t, return |S|.
 - Otherwise, let *X* be the largest element in *S*, return $\frac{tD}{X}$.

Proposition

If Y is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

Proposition

If *Y* is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

$$Var[Y] = E[Y^2] - E[Y]^2 \le E[Y^2] = Pr[Y = 1].$$

Proposition

If *Y* is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

$$Var[Y] = E[Y^2] - E[Y]^2 \le E[Y^2] = Pr[Y = 1].$$

- Let's denote $\ell \coloneqq ||x||_0$, assume $\epsilon < \frac{1}{2}$, and $d > \frac{2}{\epsilon^2 \delta}$.
- First case of output: if |S| < t, what's the chance that $||x||_0 > |S|$?

Proposition

If *Y* is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

$$Var[Y] = \mathbf{E}[Y^2] - \mathbf{E}[Y]^2 \le \mathbf{E}[Y^2] = \mathbf{Pr}[Y = 1].$$

- Let's denote $\ell \coloneqq ||x||_0$, assume $\epsilon < \frac{1}{2}$, and $d > \frac{2}{\epsilon^2 \delta}$.
- First case of output: if |S| < t, what's the chance that $||x||_0 > |S|$?
 - For any pair of indices, they are mapped to the same address with probability $\frac{1}{D}$.

Proposition

If Y is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

$$Var[Y] = \mathbf{E}[Y^2] - \mathbf{E}[Y]^2 \le \mathbf{E}[Y^2] = \mathbf{Pr}[Y = 1].$$

- Let's denote $\ell \coloneqq ||x||_0$, assume $\epsilon < \frac{1}{2}$, and $d > \frac{2}{\epsilon^2 \delta}$.
- First case of output: if |S| < t, what's the chance that $||x||_0 > |S|$?
 - For any pair of indices, they are mapped to the same address with probability $\frac{1}{D}$.
 - There are $\binom{\ell}{2}$ pairs, so the probability that any clash happens is $\leq \binom{\ell}{2} \cdot \frac{1}{D} \leq \frac{1}{d}$. (Recall $D \geq d^3$.)

• The interesting case: $|S| \ge t$.

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \le \frac{(1-\epsilon/2)tD}{\ell}$.

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \le \frac{(1-\epsilon/2)tD}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \dots, \ell$, and let Z_i be the indicator variable for the event $h(i) < \frac{(1-\epsilon/2)tD}{\ell}$.

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \le \frac{(1-\epsilon/2)tD}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \dots, \ell$, and let Z_i be the indicator variable for the event $h(i) < \frac{(1-\epsilon/2)tD}{\ell}$.
- Then $\mathbf{E}[Z_i] = (1 \epsilon/2)t/\ell$.

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \le \frac{(1-\epsilon/2)tD}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \dots, \ell$, and let Z_i be the indicator variable for the event $h(i) < \frac{(1-\epsilon/2)tD}{\ell}$.
- Then $\mathbf{E}[Z_i] = (1 \epsilon/2)t/\ell$.
- On the other hand, $Z := \sum_{i=1}^{\ell} Z_i \ge t$.

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \le \frac{(1-\epsilon/2)tD}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \dots, \ell$, and let Z_i be the indicator variable for the event $h(i) < \frac{(1-\epsilon/2)tD}{\ell}$.
- Then $\mathbf{E}[Z_i] = (1 \epsilon/2)t/\ell$.
- On the other hand, $Z := \sum_{i=1}^{\ell} Z_i \ge t$.
- $\operatorname{Var}[Z_i] \leq \Pr[Z_i] = (1 \frac{\epsilon}{2})t/\ell$.

Analysis: The interesting case

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \le \frac{(1-\epsilon/2)tD}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \dots, \ell$, and let Z_i be the indicator variable for the event $h(i) < \frac{(1-\epsilon/2)tD}{\ell}$.
- Then $\mathbf{E}[Z_i] = (1 \epsilon/2)t/\ell$.
- On the other hand, $Z := \sum_{i=1}^{\ell} Z_i \ge t$.
- $\operatorname{Var}[Z_i] \leq \Pr[Z_i] = (1 \frac{\epsilon}{2})t/\ell$.
- By pairwise independence we have $Var[Z] = \sum_{i} Var[Z_i] \le t$.

• We have so far $\{\frac{tD}{X} > (1+\epsilon)\ell\} \Rightarrow \{Z \ge t\}$, $\mathbf{E}[Z] \le (1-\frac{\epsilon}{2})t$, and $\mathrm{Var}[Z] \le t$.

- We have so far $\{\frac{tD}{v} > (1+\epsilon)\ell\} \Rightarrow \{Z \geq t\}$, $\mathbf{E}[Z] \leq (1-\frac{\epsilon}{2})t$, and Var[Z] < t.
- By Chebysheve inequality, we have

$$\Pr\left[\frac{tD}{X} > (1+\epsilon)\ell\right] \le \Pr\left[Z \ge t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{4}{\epsilon^2 t} \le \frac{\delta}{3}.$$

- We have so far $\{\frac{tD}{X} > (1+\epsilon)\ell\} \Rightarrow \{Z \ge t\}$, $\mathbf{E}[Z] \le (1-\frac{\epsilon}{2})t$, and $\mathrm{Var}[Z] \le t$.
- By Chebysheve inequality, we have

$$\Pr\left[\frac{tD}{X} > (1+\epsilon)\ell\right] \le \Pr\left[Z \ge t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{4}{\epsilon^2 t} \le \frac{\delta}{3}.$$

• Almost symmetrically, the event $\{\frac{tD}{X} < (1 - \epsilon)\ell\}$ happens only if fewer than t of the ℓ elements are hashed to addresses smaller than $X > \frac{tD}{(1-\epsilon)\ell}$.

- We have so far $\{\frac{tD}{X} > (1+\epsilon)\ell\} \Rightarrow \{Z \ge t\}$, $\mathbf{E}[Z] \le (1-\frac{\epsilon}{2})t$, and $\mathrm{Var}[Z] \le t$.
- By Chebysheve inequality, we have

$$\Pr\left[\frac{tD}{X} > (1+\epsilon)\ell\right] \le \Pr\left[Z \ge t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{4}{\epsilon^2 t} \le \frac{\delta}{3}.$$

- Almost symmetrically, the event $\{\frac{tD}{X} < (1 \epsilon)\ell\}$ happens only if fewer than t of the ℓ elements are hashed to addresses smaller than $X > \frac{tD}{(1-\epsilon)\ell}$.
- Let Z_i be the indicator variable for the event $h(i) < \frac{tD}{(1-\epsilon)\ell}$.

- We have so far $\{\frac{tD}{X} > (1+\epsilon)\ell\} \Rightarrow \{Z \ge t\}$, $\mathbf{E}[Z] \le (1-\frac{\epsilon}{2})t$, and $\mathrm{Var}[Z] \le t$.
- By Chebysheve inequality, we have

$$\Pr\left[\frac{tD}{X} > (1+\epsilon)\ell\right] \le \Pr\left[Z \ge t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{4}{\epsilon^2 t} \le \frac{\delta}{3}.$$

- Almost symmetrically, the event $\{\frac{tD}{X} < (1 \epsilon)\ell\}$ happens only if fewer than t of the ℓ elements are hashed to addresses smaller than $X > \frac{tD}{(1-\epsilon)\ell}$.
- Let Z_i be the indicator variable for the event $h(i) < \frac{tD}{(1-\epsilon)\ell}$.

$$\frac{t}{(1-\epsilon)\ell} \geq \mathbf{E}\left[Z_i\right] \geq \frac{t}{(1-\epsilon)\ell} - \frac{1}{D} \geq \frac{(1+\epsilon)t}{\ell} - \frac{1}{D} \geq \frac{(1+\epsilon/2)t}{\ell}.$$

$$\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

$$\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \ge (1 + \frac{\epsilon}{2})t$, $\operatorname{Var}[Z] \le 2t$.

$$\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \ge (1 + \frac{\epsilon}{2})t$, $\mathrm{Var}[Z] \le 2t$. By Chebyshev inequality,

$$\Pr\left[\frac{tD}{X} < (1-\epsilon)\ell\right] \le \Pr\left[Z < t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{8}{\epsilon^2 t} \le \frac{2\delta}{3}.$$

$$\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \ge (1 + \frac{\epsilon}{2})t$, $\operatorname{Var}[Z] \le 2t$. By Chebyshev inequality,

$$\Pr\left[\frac{tD}{X} < (1 - \epsilon)\ell\right] \le \Pr\left[Z < t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{8}{\epsilon^2 t} \le \frac{2\delta}{3}.$$

Combining everything, we have that with probability at least $1 - \delta$, $\left| \frac{tD}{X} - \ell \right| \le \epsilon \ell$.

$$\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \ge (1 + \frac{\epsilon}{2})t$, $\mathrm{Var}[Z] \le 2t$. By Chebyshev inequality,

$$\Pr\left[\frac{tD}{X} < (1 - \epsilon)\ell\right] \le \Pr\left[Z < t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{8}{\epsilon^2 t} \le \frac{2\delta}{3}.$$

Combining everything, we have that with probability at least $1 - \delta$, $\left| \frac{tD}{X} - \ell \right| \le \epsilon \ell$.

Space usage:

• Storing the hash takes space $O(\log D) = O(\log d)$.

$$\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \ge (1 + \frac{\epsilon}{2})t$, $\operatorname{Var}[Z] \le 2t$. By Chebyshev inequality,

$$\Pr\left[\frac{tD}{X} < (1 - \epsilon)\ell\right] \le \Pr\left[Z < t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{8}{\epsilon^2 t} \le \frac{2\delta}{3}.$$

Combining everything, we have that with probability at least $1 - \delta$, $\left| \frac{tD}{X} - \ell \right| \le \epsilon \ell$.

Space usage:

- Storing the hash takes space $O(\log D) = O(\log d)$.
- Storing S takes space $tO(\log D) = O(\frac{\log d}{\epsilon^2 \delta})$.

$$\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \ge (1 + \frac{\epsilon}{2})t$, $\operatorname{Var}[Z] \le 2t$. By Chebyshev inequality,

$$\Pr\left[\frac{tD}{X} < (1 - \epsilon)\ell\right] \le \Pr\left[Z < t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{8}{\epsilon^2 t} \le \frac{2\delta}{3}.$$

Combining everything, we have that with probability at least $1 - \delta$, $\left| \frac{tD}{X} - \ell \right| \le \epsilon \ell$.

Space usage:

- Storing the hash takes space $O(\log D) = O(\log d)$.
- Storing *S* takes space $tO(\log D) = O(\frac{\log d}{\epsilon^2 \delta})$.
- The optimal algorithm uses space $O(\log d + \epsilon^{-2})!$

