
Streaming Algorithm: Count-Min Sketch

Learning Goals

Frequency Estimation

The Count-Min Sketch

Cash register and turnstile models

Count-Sketch

October 20, 2022 1 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation

Recall the streaming model: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.

The frequency vector x ∈ Zd
: xj = | {t : it = j} |.

The AMS sketch estimates ||x||2.

What if we would like an estimate of each xj? This is called Frequency

Estimation.

Recall Bloom filter: we wanted to know quickly whether an element is

present, allowing mistakes.

There we maintained many hash tables, and return Yes only if there is a

record in all tables

Can we emulate the idea here?

October 20, 2022 2 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation

Recall the streaming model: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.

The AMS sketch estimates ||x||2.

What if we would like an estimate of each xj? This is called Frequency

Estimation.

Recall Bloom filter: we wanted to know quickly whether an element is

present, allowing mistakes.

There we maintained many hash tables, and return Yes only if there is a

record in all tables

Can we emulate the idea here?

October 20, 2022 2 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation

Recall the streaming model: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
The AMS sketch estimates ||x||2.

What if we would like an estimate of each xj? This is called Frequency

Estimation.

Recall Bloom filter: we wanted to know quickly whether an element is

present, allowing mistakes.

There we maintained many hash tables, and return Yes only if there is a

record in all tables

Can we emulate the idea here?

October 20, 2022 2 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation

Recall the streaming model: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
The AMS sketch estimates ||x||2.

What if we would like an estimate of each xj? This is called Frequency

Estimation.

Recall Bloom filter: we wanted to know quickly whether an element is

present, allowing mistakes.

There we maintained many hash tables, and return Yes only if there is a

record in all tables

Can we emulate the idea here?

October 20, 2022 2 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation

Recall the streaming model: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
The AMS sketch estimates ||x||2.

What if we would like an estimate of each xj? This is called Frequency

Estimation.

Recall Bloom filter: we wanted to know quickly whether an element is

present, allowing mistakes.

There we maintained many hash tables, and return Yes only if there is a

record in all tables

Can we emulate the idea here?

October 20, 2022 2 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation

Recall the streaming model: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
The AMS sketch estimates ||x||2.

What if we would like an estimate of each xj? This is called Frequency

Estimation.

Recall Bloom filter: we wanted to know quickly whether an element is

present, allowing mistakes.

There we maintained many hash tables, and return Yes only if there is a

record in all tables

Can we emulate the idea here?

October 20, 2022 2 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation

Recall the streaming model: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
The AMS sketch estimates ||x||2.

What if we would like an estimate of each xj? This is called Frequency

Estimation.

Recall Bloom filter: we wanted to know quickly whether an element is

present, allowing mistakes.

There we maintained many hash tables, and return Yes only if there is a

record in all tables

Can we emulate the idea here?

October 20, 2022 2 / 11

Streaming Algorithm: Count-Min Sketch

A�empt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide

later.

Maintain counters C[1], · · · ,C[k], initialized to 0.

When it arrives, increase C[h(it)] by 1.

In the end, to estimate xj , we return C[h(j)].

Clearly, C[h(j)] is an overestimate of xj due to clashes.

How many clashes are there?

If h is sampled from a universal hash family, in expectation

C[h(j)] ≤ xj + n
k .

If we set k = 1

ε , this would give an estimate with εn additive error in

expectation.

Let’s try pushing the guarantee to “with high probability” by repetitions!

October 20, 2022 3 / 11

Streaming Algorithm: Count-Min Sketch

A�empt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide

later.

Maintain counters C[1], · · · ,C[k], initialized to 0.

When it arrives, increase C[h(it)] by 1.

In the end, to estimate xj , we return C[h(j)].

Clearly, C[h(j)] is an overestimate of xj due to clashes.

How many clashes are there?

If h is sampled from a universal hash family, in expectation

C[h(j)] ≤ xj + n
k .

If we set k = 1

ε , this would give an estimate with εn additive error in

expectation.

Let’s try pushing the guarantee to “with high probability” by repetitions!

October 20, 2022 3 / 11

Streaming Algorithm: Count-Min Sketch

A�empt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide

later.

Maintain counters C[1], · · · ,C[k], initialized to 0.

When it arrives, increase C[h(it)] by 1.

In the end, to estimate xj , we return C[h(j)].

Clearly, C[h(j)] is an overestimate of xj due to clashes.

How many clashes are there?

If h is sampled from a universal hash family, in expectation

C[h(j)] ≤ xj + n
k .

If we set k = 1

ε , this would give an estimate with εn additive error in

expectation.

Let’s try pushing the guarantee to “with high probability” by repetitions!

October 20, 2022 3 / 11

Streaming Algorithm: Count-Min Sketch

A�empt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide

later.

Maintain counters C[1], · · · ,C[k], initialized to 0.

When it arrives, increase C[h(it)] by 1.

In the end, to estimate xj , we return C[h(j)].

Clearly, C[h(j)] is an overestimate of xj due to clashes.

How many clashes are there?

If h is sampled from a universal hash family, in expectation

C[h(j)] ≤ xj + n
k .

If we set k = 1

ε , this would give an estimate with εn additive error in

expectation.

Let’s try pushing the guarantee to “with high probability” by repetitions!

October 20, 2022 3 / 11

Streaming Algorithm: Count-Min Sketch

A�empt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide

later.

Maintain counters C[1], · · · ,C[k], initialized to 0.

When it arrives, increase C[h(it)] by 1.

In the end, to estimate xj , we return C[h(j)].

Clearly, C[h(j)] is an overestimate of xj due to clashes.

How many clashes are there?

If h is sampled from a universal hash family, in expectation

C[h(j)] ≤ xj + n
k .

If we set k = 1

ε , this would give an estimate with εn additive error in

expectation.

Let’s try pushing the guarantee to “with high probability” by repetitions!

October 20, 2022 3 / 11

Streaming Algorithm: Count-Min Sketch

A�empt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide

later.

Maintain counters C[1], · · · ,C[k], initialized to 0.

When it arrives, increase C[h(it)] by 1.

In the end, to estimate xj , we return C[h(j)].

Clearly, C[h(j)] is an overestimate of xj due to clashes.

How many clashes are there?

If h is sampled from a universal hash family, in expectation

C[h(j)] ≤ xj + n
k .

If we set k = 1

ε , this would give an estimate with εn additive error in

expectation.

Let’s try pushing the guarantee to “with high probability” by repetitions!

October 20, 2022 3 / 11

Streaming Algorithm: Count-Min Sketch

A�empt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide

later.

Maintain counters C[1], · · · ,C[k], initialized to 0.

When it arrives, increase C[h(it)] by 1.

In the end, to estimate xj , we return C[h(j)].

Clearly, C[h(j)] is an overestimate of xj due to clashes.

How many clashes are there?

If h is sampled from a universal hash family, in expectation

C[h(j)] ≤ xj + n
k .

If we set k = 1

ε , this would give an estimate with εn additive error in

expectation.

Let’s try pushing the guarantee to “with high probability” by repetitions!

October 20, 2022 3 / 11

Streaming Algorithm: Count-Min Sketch

A�empt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide

later.

Maintain counters C[1], · · · ,C[k], initialized to 0.

When it arrives, increase C[h(it)] by 1.

In the end, to estimate xj , we return C[h(j)].

Clearly, C[h(j)] is an overestimate of xj due to clashes.

How many clashes are there?

If h is sampled from a universal hash family, in expectation

C[h(j)] ≤ xj + n
k .

If we set k = 1

ε , this would give an estimate with εn additive error in

expectation.

Let’s try pushing the guarantee to “with high probability” by repetitions!

October 20, 2022 3 / 11

Streaming Algorithm: Count-Min Sketch

A�empt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide

later.

Maintain counters C[1], · · · ,C[k], initialized to 0.

When it arrives, increase C[h(it)] by 1.

In the end, to estimate xj , we return C[h(j)].

Clearly, C[h(j)] is an overestimate of xj due to clashes.

How many clashes are there?

If h is sampled from a universal hash family, in expectation

C[h(j)] ≤ xj + n
k .

If we set k = 1

ε , this would give an estimate with εn additive error in

expectation.

Let’s try pushing the guarantee to “with high probability” by repetitions!

October 20, 2022 3 / 11

Streaming Algorithm: Count-Min Sketch

Count-Min Sketch

The Count-Min algorithm by Cormode and Muthukrishnan (2005):

Sample ` hash functions h1, · · · , h` : [d]→ [k] independently from a

universal hash family; let k be
2

ε .

Maintain counters

C1[1], · · · ,C1[k],C2[1], · · · ,C2[k], · · · ,C`[1], · · · ,C`[k], initialized to 0.

When it arrives, for j = 1, · · · , `, increase Cj[hj(it)] by one.

At the end, to estimate xj , return min {C1[h1(j)], · · · ,C`[h`(j)]}.

October 20, 2022 4 / 11

Streaming Algorithm: Count-Min Sketch

Count-Min Sketch

The Count-Min algorithm by Cormode and Muthukrishnan (2005):

Sample ` hash functions h1, · · · , h` : [d]→ [k] independently from a

universal hash family; let k be
2

ε .

Maintain counters

C1[1], · · · ,C1[k],C2[1], · · · ,C2[k], · · · ,C`[1], · · · ,C`[k], initialized to 0.

When it arrives, for j = 1, · · · , `, increase Cj[hj(it)] by one.

At the end, to estimate xj , return min {C1[h1(j)], · · · ,C`[h`(j)]}.

October 20, 2022 4 / 11

Streaming Algorithm: Count-Min Sketch

Count-Min Sketch

The Count-Min algorithm by Cormode and Muthukrishnan (2005):

Sample ` hash functions h1, · · · , h` : [d]→ [k] independently from a

universal hash family; let k be
2

ε .

Maintain counters

C1[1], · · · ,C1[k],C2[1], · · · ,C2[k], · · · ,C`[1], · · · ,C`[k], initialized to 0.

When it arrives, for j = 1, · · · , `, increase Cj[hj(it)] by one.

At the end, to estimate xj , return min {C1[h1(j)], · · · ,C`[h`(j)]}.

October 20, 2022 4 / 11

Streaming Algorithm: Count-Min Sketch

Count-Min Sketch

The Count-Min algorithm by Cormode and Muthukrishnan (2005):

Sample ` hash functions h1, · · · , h` : [d]→ [k] independently from a

universal hash family; let k be
2

ε .

Maintain counters

C1[1], · · · ,C1[k],C2[1], · · · ,C2[k], · · · ,C`[1], · · · ,C`[k], initialized to 0.

When it arrives, for j = 1, · · · , `, increase Cj[hj(it)] by one.

At the end, to estimate xj , return min {C1[h1(j)], · · · ,C`[h`(j)]}.

October 20, 2022 4 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Min

For each j ∈ [d] and i ∈ [`], xj ≤ Ci[hi(j)], so the output is never

smaller than xj .

For each j ∈ [d] and i ∈ [`], let Yi,j be the number of clashes of j by hi ,
then Ci[hi(j)] ≤ xj + Yi,j .

By universality, E[Yij] ≤ n
k .

By Markov inequality, Pr[Yij ≥ 2n
k = εn] ≤ 1

2
.

By independence, Pr[Yij ≥ εn,∀i] ≤ 2
−`

.

Therefore, for some ` = O(log d), with high probability our estimate is

correct within additive εn error for all coordinates of x .

Space usage:

Maintaining the counters: there are k` = 2

ε log d counters, each taking

O(log n) space.

Maintaining the hash functions: there are ` = O(log d) of them, each

taking O(log d) space.

October 20, 2022 5 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Min

For each j ∈ [d] and i ∈ [`], xj ≤ Ci[hi(j)], so the output is never

smaller than xj .
For each j ∈ [d] and i ∈ [`], let Yi,j be the number of clashes of j by hi ,
then Ci[hi(j)] ≤ xj + Yi,j .

By universality, E[Yij] ≤ n
k .

By Markov inequality, Pr[Yij ≥ 2n
k = εn] ≤ 1

2
.

By independence, Pr[Yij ≥ εn,∀i] ≤ 2
−`

.

Therefore, for some ` = O(log d), with high probability our estimate is

correct within additive εn error for all coordinates of x .

Space usage:

Maintaining the counters: there are k` = 2

ε log d counters, each taking

O(log n) space.

Maintaining the hash functions: there are ` = O(log d) of them, each

taking O(log d) space.

October 20, 2022 5 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Min

For each j ∈ [d] and i ∈ [`], xj ≤ Ci[hi(j)], so the output is never

smaller than xj .
For each j ∈ [d] and i ∈ [`], let Yi,j be the number of clashes of j by hi ,
then Ci[hi(j)] ≤ xj + Yi,j .

By universality, E[Yij] ≤ n
k .

By Markov inequality, Pr[Yij ≥ 2n
k = εn] ≤ 1

2
.

By independence, Pr[Yij ≥ εn,∀i] ≤ 2
−`

.

Therefore, for some ` = O(log d), with high probability our estimate is

correct within additive εn error for all coordinates of x .

Space usage:

Maintaining the counters: there are k` = 2

ε log d counters, each taking

O(log n) space.

Maintaining the hash functions: there are ` = O(log d) of them, each

taking O(log d) space.

October 20, 2022 5 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Min

For each j ∈ [d] and i ∈ [`], xj ≤ Ci[hi(j)], so the output is never

smaller than xj .
For each j ∈ [d] and i ∈ [`], let Yi,j be the number of clashes of j by hi ,
then Ci[hi(j)] ≤ xj + Yi,j .

By universality, E[Yij] ≤ n
k .

By Markov inequality, Pr[Yij ≥ 2n
k = εn] ≤ 1

2
.

By independence, Pr[Yij ≥ εn,∀i] ≤ 2
−`

.

Therefore, for some ` = O(log d), with high probability our estimate is

correct within additive εn error for all coordinates of x .

Space usage:

Maintaining the counters: there are k` = 2

ε log d counters, each taking

O(log n) space.

Maintaining the hash functions: there are ` = O(log d) of them, each

taking O(log d) space.

October 20, 2022 5 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Min

For each j ∈ [d] and i ∈ [`], xj ≤ Ci[hi(j)], so the output is never

smaller than xj .
For each j ∈ [d] and i ∈ [`], let Yi,j be the number of clashes of j by hi ,
then Ci[hi(j)] ≤ xj + Yi,j .

By universality, E[Yij] ≤ n
k .

By Markov inequality, Pr[Yij ≥ 2n
k = εn] ≤ 1

2
.

By independence, Pr[Yij ≥ εn, ∀i] ≤ 2
−`

.

Therefore, for some ` = O(log d), with high probability our estimate is

correct within additive εn error for all coordinates of x .

Space usage:

Maintaining the counters: there are k` = 2

ε log d counters, each taking

O(log n) space.

Maintaining the hash functions: there are ` = O(log d) of them, each

taking O(log d) space.

October 20, 2022 5 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Min

For each j ∈ [d] and i ∈ [`], xj ≤ Ci[hi(j)], so the output is never

smaller than xj .
For each j ∈ [d] and i ∈ [`], let Yi,j be the number of clashes of j by hi ,
then Ci[hi(j)] ≤ xj + Yi,j .

By universality, E[Yij] ≤ n
k .

By Markov inequality, Pr[Yij ≥ 2n
k = εn] ≤ 1

2
.

By independence, Pr[Yij ≥ εn, ∀i] ≤ 2
−`

.

Therefore, for some ` = O(log d), with high probability our estimate is

correct within additive εn error for all coordinates of x .

Space usage:

Maintaining the counters: there are k` = 2

ε log d counters, each taking

O(log n) space.

Maintaining the hash functions: there are ` = O(log d) of them, each

taking O(log d) space.

October 20, 2022 5 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Min

For each j ∈ [d] and i ∈ [`], xj ≤ Ci[hi(j)], so the output is never

smaller than xj .
For each j ∈ [d] and i ∈ [`], let Yi,j be the number of clashes of j by hi ,
then Ci[hi(j)] ≤ xj + Yi,j .

By universality, E[Yij] ≤ n
k .

By Markov inequality, Pr[Yij ≥ 2n
k = εn] ≤ 1

2
.

By independence, Pr[Yij ≥ εn, ∀i] ≤ 2
−`

.

Therefore, for some ` = O(log d), with high probability our estimate is

correct within additive εn error for all coordinates of x .

Space usage:

Maintaining the counters: there are k` = 2

ε log d counters, each taking

O(log n) space.

Maintaining the hash functions: there are ` = O(log d) of them, each

taking O(log d) space.

October 20, 2022 5 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Min

For each j ∈ [d] and i ∈ [`], xj ≤ Ci[hi(j)], so the output is never

smaller than xj .
For each j ∈ [d] and i ∈ [`], let Yi,j be the number of clashes of j by hi ,
then Ci[hi(j)] ≤ xj + Yi,j .

By universality, E[Yij] ≤ n
k .

By Markov inequality, Pr[Yij ≥ 2n
k = εn] ≤ 1

2
.

By independence, Pr[Yij ≥ εn, ∀i] ≤ 2
−`

.

Therefore, for some ` = O(log d), with high probability our estimate is

correct within additive εn error for all coordinates of x .

Space usage:

Maintaining the counters: there are k` = 2

ε log d counters, each taking

O(log n) space.

Maintaining the hash functions: there are ` = O(log d) of them, each

taking O(log d) space.

October 20, 2022 5 / 11

Streaming Algorithm: Count-Min Sketch

More General Streaming Models

Our streaming model so far: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.

The frequency vector x ∈ Zd
: xj = | {t : it = j} |.

Slight generalization: each data point at time t is a pair (it ,∆t):

it is the index

∆t is the increment of the count at index it

Our streaming problems so far are special cases when all ∆t = 1.

If ∆t are positive real numbers, this is called the cash register model.

If ∆t are allowed to be negative, but every frequency counter xj is

guaranteed to be non-negative at all time, this is called the strict
turnstile model.

If ∆t can be negative, and xj’s can be negative as well, this is called the

turnstile model.

October 20, 2022 6 / 11

Streaming Algorithm: Count-Min Sketch

More General Streaming Models

Our streaming model so far: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.

Slight generalization: each data point at time t is a pair (it ,∆t):

it is the index

∆t is the increment of the count at index it

Our streaming problems so far are special cases when all ∆t = 1.

If ∆t are positive real numbers, this is called the cash register model.

If ∆t are allowed to be negative, but every frequency counter xj is

guaranteed to be non-negative at all time, this is called the strict
turnstile model.

If ∆t can be negative, and xj’s can be negative as well, this is called the

turnstile model.

October 20, 2022 6 / 11

Streaming Algorithm: Count-Min Sketch

More General Streaming Models

Our streaming model so far: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
Slight generalization: each data point at time t is a pair (it ,∆t):

it is the index

∆t is the increment of the count at index it

Our streaming problems so far are special cases when all ∆t = 1.

If ∆t are positive real numbers, this is called the cash register model.

If ∆t are allowed to be negative, but every frequency counter xj is

guaranteed to be non-negative at all time, this is called the strict
turnstile model.

If ∆t can be negative, and xj’s can be negative as well, this is called the

turnstile model.

October 20, 2022 6 / 11

Streaming Algorithm: Count-Min Sketch

More General Streaming Models

Our streaming model so far: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
Slight generalization: each data point at time t is a pair (it ,∆t):

it is the index

∆t is the increment of the count at index it

Our streaming problems so far are special cases when all ∆t = 1.

If ∆t are positive real numbers, this is called the cash register model.

If ∆t are allowed to be negative, but every frequency counter xj is

guaranteed to be non-negative at all time, this is called the strict
turnstile model.

If ∆t can be negative, and xj’s can be negative as well, this is called the

turnstile model.

October 20, 2022 6 / 11

Streaming Algorithm: Count-Min Sketch

More General Streaming Models

Our streaming model so far: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
Slight generalization: each data point at time t is a pair (it ,∆t):

it is the index

∆t is the increment of the count at index it

Our streaming problems so far are special cases when all ∆t = 1.

If ∆t are positive real numbers, this is called the cash register model.

If ∆t are allowed to be negative, but every frequency counter xj is

guaranteed to be non-negative at all time, this is called the strict
turnstile model.

If ∆t can be negative, and xj’s can be negative as well, this is called the

turnstile model.

October 20, 2022 6 / 11

Streaming Algorithm: Count-Min Sketch

More General Streaming Models

Our streaming model so far: the stream i1, . . . , in ∈ [d] := {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
Slight generalization: each data point at time t is a pair (it ,∆t):

it is the index

∆t is the increment of the count at index it

Our streaming problems so far are special cases when all ∆t = 1.

If ∆t are positive real numbers, this is called the cash register model.

If ∆t are allowed to be negative, but every frequency counter xj is

guaranteed to be non-negative at all time, this is called the strict
turnstile model.

If ∆t can be negative, and xj’s can be negative as well, this is called the

turnstile model.

October 20, 2022 6 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general se�ings?

In cash register model: ∆t are positive real numbers.

Count-Min still works, just increase the counters by ∆t ; the error term

is relaxed to ε||x||1.

Recall ||x||1 =
∑

i |xi|.
In the strict turnstile model, ∆t are allowed to be negative, but every

frequency counter xj is guaranteed to be non-negative at all time.

Count-Min still works.

In the turnstile model, ∆t can be negative, and xj’s can be negative as

well.

The analysis of Count-Min is problematic in this se�ing. Markov

inequality needs nonnegativity!

October 20, 2022 7 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general se�ings?

In cash register model: ∆t are positive real numbers.

Count-Min still works, just increase the counters by ∆t ; the error term

is relaxed to ε||x||1.

Recall ||x||1 =
∑

i |xi|.
In the strict turnstile model, ∆t are allowed to be negative, but every

frequency counter xj is guaranteed to be non-negative at all time.

Count-Min still works.

In the turnstile model, ∆t can be negative, and xj’s can be negative as

well.

The analysis of Count-Min is problematic in this se�ing. Markov

inequality needs nonnegativity!

October 20, 2022 7 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general se�ings?

In cash register model: ∆t are positive real numbers.

Count-Min still works, just increase the counters by ∆t ; the error term

is relaxed to ε||x||1.

Recall ||x||1 =
∑

i |xi|.

In the strict turnstile model, ∆t are allowed to be negative, but every

frequency counter xj is guaranteed to be non-negative at all time.

Count-Min still works.

In the turnstile model, ∆t can be negative, and xj’s can be negative as

well.

The analysis of Count-Min is problematic in this se�ing. Markov

inequality needs nonnegativity!

October 20, 2022 7 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general se�ings?

In cash register model: ∆t are positive real numbers.

Count-Min still works, just increase the counters by ∆t ; the error term

is relaxed to ε||x||1.

Recall ||x||1 =
∑

i |xi|.
In the strict turnstile model, ∆t are allowed to be negative, but every

frequency counter xj is guaranteed to be non-negative at all time.

Count-Min still works.

In the turnstile model, ∆t can be negative, and xj’s can be negative as

well.

The analysis of Count-Min is problematic in this se�ing. Markov

inequality needs nonnegativity!

October 20, 2022 7 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general se�ings?

In cash register model: ∆t are positive real numbers.

Count-Min still works, just increase the counters by ∆t ; the error term

is relaxed to ε||x||1.

Recall ||x||1 =
∑

i |xi|.
In the strict turnstile model, ∆t are allowed to be negative, but every

frequency counter xj is guaranteed to be non-negative at all time.

Count-Min still works.

In the turnstile model, ∆t can be negative, and xj’s can be negative as

well.

The analysis of Count-Min is problematic in this se�ing. Markov

inequality needs nonnegativity!

October 20, 2022 7 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general se�ings?

In cash register model: ∆t are positive real numbers.

Count-Min still works, just increase the counters by ∆t ; the error term

is relaxed to ε||x||1.

Recall ||x||1 =
∑

i |xi|.
In the strict turnstile model, ∆t are allowed to be negative, but every

frequency counter xj is guaranteed to be non-negative at all time.

Count-Min still works.

In the turnstile model, ∆t can be negative, and xj’s can be negative as

well.

The analysis of Count-Min is problematic in this se�ing. Markov

inequality needs nonnegativity!

October 20, 2022 7 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general se�ings?

In cash register model: ∆t are positive real numbers.

Count-Min still works, just increase the counters by ∆t ; the error term

is relaxed to ε||x||1.

Recall ||x||1 =
∑

i |xi|.
In the strict turnstile model, ∆t are allowed to be negative, but every

frequency counter xj is guaranteed to be non-negative at all time.

Count-Min still works.

In the turnstile model, ∆t can be negative, and xj’s can be negative as

well.

The analysis of Count-Min is problematic in this se�ing. Markov

inequality needs nonnegativity!

October 20, 2022 7 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation for the Turnstile Model

What goes wrong with the analysis of Count-Min is that the error

term caused by clashes can be negative.

Ci[hi(j)] = xj+error.

When “error” is all nonnegative, we can take minimum among Ci[hi(j)].
But when error can be negative, taking the minimum may seriously

underestimate xj .
Similarly, taking the maximum may overestimate xj .
It is natural to try the median.

Claim (Problem 1 in Problem Set 3)

Let Z1, · · · ,Zn be i.i.d. random variables. Let M be a median. There is a

constant c > 0 such that:

If Pr[Zi ≥ t] ≤ p < 1

4
, then Pr[M ≥ t] ≤ e−cn.

If Pr[Zi ≤ t] ≤ p < 1

4
, then Pr[M ≤ t] ≤ e−cn.

October 20, 2022 8 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation for the Turnstile Model

What goes wrong with the analysis of Count-Min is that the error

term caused by clashes can be negative.

Ci[hi(j)] = xj+error.

When “error” is all nonnegative, we can take minimum among Ci[hi(j)].
But when error can be negative, taking the minimum may seriously

underestimate xj .
Similarly, taking the maximum may overestimate xj .
It is natural to try the median.

Claim (Problem 1 in Problem Set 3)

Let Z1, · · · ,Zn be i.i.d. random variables. Let M be a median. There is a

constant c > 0 such that:

If Pr[Zi ≥ t] ≤ p < 1

4
, then Pr[M ≥ t] ≤ e−cn.

If Pr[Zi ≤ t] ≤ p < 1

4
, then Pr[M ≤ t] ≤ e−cn.

October 20, 2022 8 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation for the Turnstile Model

What goes wrong with the analysis of Count-Min is that the error

term caused by clashes can be negative.

Ci[hi(j)] = xj+error.

When “error” is all nonnegative, we can take minimum among Ci[hi(j)].
But when error can be negative, taking the minimum may seriously

underestimate xj .

Similarly, taking the maximum may overestimate xj .
It is natural to try the median.

Claim (Problem 1 in Problem Set 3)

Let Z1, · · · ,Zn be i.i.d. random variables. Let M be a median. There is a

constant c > 0 such that:

If Pr[Zi ≥ t] ≤ p < 1

4
, then Pr[M ≥ t] ≤ e−cn.

If Pr[Zi ≤ t] ≤ p < 1

4
, then Pr[M ≤ t] ≤ e−cn.

October 20, 2022 8 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation for the Turnstile Model

What goes wrong with the analysis of Count-Min is that the error

term caused by clashes can be negative.

Ci[hi(j)] = xj+error.

When “error” is all nonnegative, we can take minimum among Ci[hi(j)].
But when error can be negative, taking the minimum may seriously

underestimate xj .
Similarly, taking the maximum may overestimate xj .

It is natural to try the median.

Claim (Problem 1 in Problem Set 3)

Let Z1, · · · ,Zn be i.i.d. random variables. Let M be a median. There is a

constant c > 0 such that:

If Pr[Zi ≥ t] ≤ p < 1

4
, then Pr[M ≥ t] ≤ e−cn.

If Pr[Zi ≤ t] ≤ p < 1

4
, then Pr[M ≤ t] ≤ e−cn.

October 20, 2022 8 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation for the Turnstile Model

What goes wrong with the analysis of Count-Min is that the error

term caused by clashes can be negative.

Ci[hi(j)] = xj+error.

When “error” is all nonnegative, we can take minimum among Ci[hi(j)].
But when error can be negative, taking the minimum may seriously

underestimate xj .
Similarly, taking the maximum may overestimate xj .
It is natural to try the median.

Claim (Problem 1 in Problem Set 3)

Let Z1, · · · ,Zn be i.i.d. random variables. Let M be a median. There is a

constant c > 0 such that:

If Pr[Zi ≥ t] ≤ p < 1

4
, then Pr[M ≥ t] ≤ e−cn.

If Pr[Zi ≤ t] ≤ p < 1

4
, then Pr[M ≤ t] ≤ e−cn.

October 20, 2022 8 / 11

Streaming Algorithm: Count-Min Sketch

Frequency Estimation for the Turnstile Model

What goes wrong with the analysis of Count-Min is that the error

term caused by clashes can be negative.

Ci[hi(j)] = xj+error.

When “error” is all nonnegative, we can take minimum among Ci[hi(j)].
But when error can be negative, taking the minimum may seriously

underestimate xj .
Similarly, taking the maximum may overestimate xj .
It is natural to try the median.

Claim (Problem 1 in Problem Set 3)

Let Z1, · · · ,Zn be i.i.d. random variables. Let M be a median. There is a

constant c > 0 such that:

If Pr[Zi ≥ t] ≤ p < 1

4
, then Pr[M ≥ t] ≤ e−cn.

If Pr[Zi ≤ t] ≤ p < 1

4
, then Pr[M ≤ t] ≤ e−cn.

October 20, 2022 8 / 11

Streaming Algorithm: Count-Min Sketch

Algorithm: same setup and initialization as before

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by ∆t

In the end, as an estimate of xj , output a median of

{C1[h1(j)], · · · ,C`[h`(j)]}.

Consider any fixed index j ∈ [d].

Which indices may cause positive error? P := {j′ : xj′ > 0}.
Similarly, indices that may cause negative error are N := {j′ : xj′ < 0}.

For any counter Ci , the expected error caused by indices in P is ≤ ||x||1k .

By Markov inequality, Pr[
∑

j′∈P\{j} xj′1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Similarly, Pr[
∑

j′∈N\{j} |xj′ |1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Se�ing k = 4

ε , ` = O(log d), with high probability our output for every

coordinate is correct within ε||x||1 additive error.

October 20, 2022 9 / 11

Streaming Algorithm: Count-Min Sketch

Algorithm: same setup and initialization as before

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by ∆t

In the end, as an estimate of xj , output a median of

{C1[h1(j)], · · · ,C`[h`(j)]}.
Consider any fixed index j ∈ [d].

Which indices may cause positive error? P := {j′ : xj′ > 0}.
Similarly, indices that may cause negative error are N := {j′ : xj′ < 0}.

For any counter Ci , the expected error caused by indices in P is ≤ ||x||1k .

By Markov inequality, Pr[
∑

j′∈P\{j} xj′1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Similarly, Pr[
∑

j′∈N\{j} |xj′ |1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Se�ing k = 4

ε , ` = O(log d), with high probability our output for every

coordinate is correct within ε||x||1 additive error.

October 20, 2022 9 / 11

Streaming Algorithm: Count-Min Sketch

Algorithm: same setup and initialization as before

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by ∆t

In the end, as an estimate of xj , output a median of

{C1[h1(j)], · · · ,C`[h`(j)]}.
Consider any fixed index j ∈ [d].

Which indices may cause positive error? P := {j′ : xj′ > 0}.

Similarly, indices that may cause negative error are N := {j′ : xj′ < 0}.

For any counter Ci , the expected error caused by indices in P is ≤ ||x||1k .

By Markov inequality, Pr[
∑

j′∈P\{j} xj′1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Similarly, Pr[
∑

j′∈N\{j} |xj′ |1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Se�ing k = 4

ε , ` = O(log d), with high probability our output for every

coordinate is correct within ε||x||1 additive error.

October 20, 2022 9 / 11

Streaming Algorithm: Count-Min Sketch

Algorithm: same setup and initialization as before

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by ∆t

In the end, as an estimate of xj , output a median of

{C1[h1(j)], · · · ,C`[h`(j)]}.
Consider any fixed index j ∈ [d].

Which indices may cause positive error? P := {j′ : xj′ > 0}.
Similarly, indices that may cause negative error are N := {j′ : xj′ < 0}.

For any counter Ci , the expected error caused by indices in P is ≤ ||x||1k .

By Markov inequality, Pr[
∑

j′∈P\{j} xj′1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Similarly, Pr[
∑

j′∈N\{j} |xj′ |1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Se�ing k = 4

ε , ` = O(log d), with high probability our output for every

coordinate is correct within ε||x||1 additive error.

October 20, 2022 9 / 11

Streaming Algorithm: Count-Min Sketch

Algorithm: same setup and initialization as before

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by ∆t

In the end, as an estimate of xj , output a median of

{C1[h1(j)], · · · ,C`[h`(j)]}.
Consider any fixed index j ∈ [d].

Which indices may cause positive error? P := {j′ : xj′ > 0}.
Similarly, indices that may cause negative error are N := {j′ : xj′ < 0}.

For any counter Ci , the expected error caused by indices in P is ≤ ||x||1k .

By Markov inequality, Pr[
∑

j′∈P\{j} xj′1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Similarly, Pr[
∑

j′∈N\{j} |xj′ |1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Se�ing k = 4

ε , ` = O(log d), with high probability our output for every

coordinate is correct within ε||x||1 additive error.

October 20, 2022 9 / 11

Streaming Algorithm: Count-Min Sketch

Algorithm: same setup and initialization as before

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by ∆t

In the end, as an estimate of xj , output a median of

{C1[h1(j)], · · · ,C`[h`(j)]}.
Consider any fixed index j ∈ [d].

Which indices may cause positive error? P := {j′ : xj′ > 0}.
Similarly, indices that may cause negative error are N := {j′ : xj′ < 0}.

For any counter Ci , the expected error caused by indices in P is ≤ ||x||1k .

By Markov inequality, Pr[
∑

j′∈P\{j} xj′1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Similarly, Pr[
∑

j′∈N\{j} |xj′ |1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Se�ing k = 4

ε , ` = O(log d), with high probability our output for every

coordinate is correct within ε||x||1 additive error.

October 20, 2022 9 / 11

Streaming Algorithm: Count-Min Sketch

Algorithm: same setup and initialization as before

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by ∆t

In the end, as an estimate of xj , output a median of

{C1[h1(j)], · · · ,C`[h`(j)]}.
Consider any fixed index j ∈ [d].

Which indices may cause positive error? P := {j′ : xj′ > 0}.
Similarly, indices that may cause negative error are N := {j′ : xj′ < 0}.

For any counter Ci , the expected error caused by indices in P is ≤ ||x||1k .

By Markov inequality, Pr[
∑

j′∈P\{j} xj′1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Similarly, Pr[
∑

j′∈N\{j} |xj′ |1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Se�ing k = 4

ε , ` = O(log d), with high probability our output for every

coordinate is correct within ε||x||1 additive error.

October 20, 2022 9 / 11

Streaming Algorithm: Count-Min Sketch

Algorithm: same setup and initialization as before

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by ∆t

In the end, as an estimate of xj , output a median of

{C1[h1(j)], · · · ,C`[h`(j)]}.
Consider any fixed index j ∈ [d].

Which indices may cause positive error? P := {j′ : xj′ > 0}.
Similarly, indices that may cause negative error are N := {j′ : xj′ < 0}.

For any counter Ci , the expected error caused by indices in P is ≤ ||x||1k .

By Markov inequality, Pr[
∑

j′∈P\{j} xj′1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Similarly, Pr[
∑

j′∈N\{j} |xj′ |1hi(j)=hi(j′) ≥
4||x||1

k] ≤ 1

4
.

Se�ing k = 4

ε , ` = O(log d), with high probability our output for every

coordinate is correct within ε||x||1 additive error.

October 20, 2022 9 / 11

Streaming Algorithm: Count-Min Sketch

Count-Sketch

We can do a bit be�er to control the error term to within ε||x||2
Recall that ||x||p =

(∑
i x

p
i

)
1/p

decreases with p for p ∈ (0,∞).

Common bound: ||x||2 ≥ 1√
n ||x||1 by Cauchy-Schwartz

Count-Sketch due to Charikar, Chen, Farach-Colton (2004)

Same setup as before, except that now each hi should be drawn from a

pairwise independent hash family; in addition, maintain hash functions

g1, . . . , g` : [d]→ {+1,−1} each drawn independently from a pairwise

independent hash family.

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by git ∆t .

In the end, for index j ∈ [d], output a median M among

g1(j)C1[h1(j)], · · · , g`(j)C`[h`(j)].

October 20, 2022 10 / 11

Streaming Algorithm: Count-Min Sketch

Count-Sketch

We can do a bit be�er to control the error term to within ε||x||2
Recall that ||x||p =

(∑
i x

p
i

)
1/p

decreases with p for p ∈ (0,∞).

Common bound: ||x||2 ≥ 1√
n ||x||1 by Cauchy-Schwartz

Count-Sketch due to Charikar, Chen, Farach-Colton (2004)

Same setup as before, except that now each hi should be drawn from a

pairwise independent hash family; in addition, maintain hash functions

g1, . . . , g` : [d]→ {+1,−1} each drawn independently from a pairwise

independent hash family.

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by git ∆t .

In the end, for index j ∈ [d], output a median M among

g1(j)C1[h1(j)], · · · , g`(j)C`[h`(j)].

October 20, 2022 10 / 11

Streaming Algorithm: Count-Min Sketch

Count-Sketch

We can do a bit be�er to control the error term to within ε||x||2
Recall that ||x||p =

(∑
i x

p
i

)
1/p

decreases with p for p ∈ (0,∞).

Common bound: ||x||2 ≥ 1√
n ||x||1 by Cauchy-Schwartz

Count-Sketch due to Charikar, Chen, Farach-Colton (2004)

Same setup as before, except that now each hi should be drawn from a

pairwise independent hash family; in addition, maintain hash functions

g1, . . . , g` : [d]→ {+1,−1} each drawn independently from a pairwise

independent hash family.

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by git ∆t .

In the end, for index j ∈ [d], output a median M among

g1(j)C1[h1(j)], · · · , g`(j)C`[h`(j)].

October 20, 2022 10 / 11

Streaming Algorithm: Count-Min Sketch

Count-Sketch

We can do a bit be�er to control the error term to within ε||x||2
Recall that ||x||p =

(∑
i x

p
i

)
1/p

decreases with p for p ∈ (0,∞).

Common bound: ||x||2 ≥ 1√
n ||x||1 by Cauchy-Schwartz

Count-Sketch due to Charikar, Chen, Farach-Colton (2004)

Same setup as before, except that now each hi should be drawn from a

pairwise independent hash family; in addition, maintain hash functions

g1, . . . , g` : [d]→ {+1,−1} each drawn independently from a pairwise

independent hash family.

At input (it ,∆t), for i = 1, · · · , `, increase counter Ci[hi(it)] by git ∆t .

In the end, for index j ∈ [d], output a median M among

g1(j)C1[h1(j)], · · · , g`(j)C`[h`(j)].

October 20, 2022 10 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Sketch

For any i ∈ [`] and j ∈ [d]. By pairwise independence of gi(·)’s,

E [Ci[hi(j)]gi(j)] = xj + E

∑
j′ 6=j

gi(j)gi(j′)xj′1hi(j′)=hi(j)

 = xj.

We bound the deviation by Chebyshev inequality:

Var [Ci[hi(j)]gi(j)] = Var

∑
j′ 6=j

gi(j)gi(j′)xj′1hi(j′)=hi(j)

 ≤ ||x||22
k

.

Pr [|gi(j)Ci[hi(j)]− xj| ≥ ε||x||2] ≤ ||x||2
2

kε2||x||2
2

=
1

kε2

We can take k = O(1

ε2
).

October 20, 2022 11 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Sketch

For any i ∈ [`] and j ∈ [d]. By pairwise independence of gi(·)’s,

E [Ci[hi(j)]gi(j)] = xj + E

∑
j′ 6=j

gi(j)gi(j′)xj′1hi(j′)=hi(j)

 = xj.

We bound the deviation by Chebyshev inequality:

Var [Ci[hi(j)]gi(j)] = Var

∑
j′ 6=j

gi(j)gi(j′)xj′1hi(j′)=hi(j)

 ≤ ||x||22
k

.

Pr [|gi(j)Ci[hi(j)]− xj| ≥ ε||x||2] ≤ ||x||2
2

kε2||x||2
2

=
1

kε2

We can take k = O(1

ε2
).

October 20, 2022 11 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Sketch

For any i ∈ [`] and j ∈ [d]. By pairwise independence of gi(·)’s,

E [Ci[hi(j)]gi(j)] = xj + E

∑
j′ 6=j

gi(j)gi(j′)xj′1hi(j′)=hi(j)

 = xj.

We bound the deviation by Chebyshev inequality:

Var [Ci[hi(j)]gi(j)] = Var

∑
j′ 6=j

gi(j)gi(j′)xj′1hi(j′)=hi(j)

 ≤ ||x||22
k

.

Pr [|gi(j)Ci[hi(j)]− xj| ≥ ε||x||2] ≤ ||x||2
2

kε2||x||2
2

=
1

kε2

We can take k = O(1

ε2
).

October 20, 2022 11 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Sketch

For any i ∈ [`] and j ∈ [d]. By pairwise independence of gi(·)’s,

E [Ci[hi(j)]gi(j)] = xj + E

∑
j′ 6=j

gi(j)gi(j′)xj′1hi(j′)=hi(j)

 = xj.

We bound the deviation by Chebyshev inequality:

Var [Ci[hi(j)]gi(j)] = Var

∑
j′ 6=j

gi(j)gi(j′)xj′1hi(j′)=hi(j)

 ≤ ||x||22
k

.

Pr [|gi(j)Ci[hi(j)]− xj| ≥ ε||x||2] ≤ ||x||2
2

kε2||x||2
2

=
1

kε2

We can take k = O(1

ε2
).

October 20, 2022 11 / 11

Streaming Algorithm: Count-Min Sketch

Analysis of Count-Sketch

For any i ∈ [`] and j ∈ [d]. By pairwise independence of gi(·)’s,

E [Ci[hi(j)]gi(j)] = xj + E

∑
j′ 6=j

gi(j)gi(j′)xj′1hi(j′)=hi(j)

 = xj.

We bound the deviation by Chebyshev inequality:

Var [Ci[hi(j)]gi(j)] = Var

∑
j′ 6=j

gi(j)gi(j′)xj′1hi(j′)=hi(j)

 ≤ ||x||22
k

.

Pr [|gi(j)Ci[hi(j)]− xj| ≥ ε||x||2] ≤ ||x||2
2

kε2||x||2
2

=
1

kε2

We can take k = O(1

ε2
).

October 20, 2022 11 / 11

	Streaming Algorithm: Count-Min Sketch

