Learning Goals

- Frequency Estimation
- The Count-Min Sketch
- Cash register and turnstile models
- Count-Sketch

• Recall the streaming model: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.

- Recall the streaming model: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^d$: $x_i = |\{t : i_t = j\}|$.

- Recall the streaming model: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^d$: $x_i = |\{t : i_t = j\}|$.
- The AMS sketch estimates $||x||_2$.

- Recall the streaming model: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- The AMS sketch estimates $||x||_2$.
- What if we would like an estimate of each x_j ? This is called Frequency Estimation.

- Recall the streaming model: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- The AMS sketch estimates $||x||_2$.
- What if we would like an estimate of each x_j ? This is called Frequency Estimation.
- Recall Bloom filter: we wanted to know quickly whether an element is present, allowing mistakes.

- Recall the streaming model: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- The AMS sketch estimates $||x||_2$.
- What if we would like an estimate of each x_j ? This is called Frequency Estimation.
- Recall Bloom filter: we wanted to know quickly whether an element is present, allowing mistakes.
 - There we maintained many hash tables, and return YES only if there is a record in all tables

- Recall the streaming model: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- The AMS sketch estimates $||x||_2$.
- What if we would like an estimate of each x_j ? This is called Frequency Estimation.
- Recall Bloom filter: we wanted to know quickly whether an element is present, allowing mistakes.
 - There we maintained many hash tables, and return YES only if there is a record in all tables
 - Can we emulate the idea here?

2/11

• Let's try a hash function h from [d] to [k] for some k that we decide later.

- Let's try a hash function h from [d] to [k] for some k that we decide later.
- Maintain counters $C[1], \dots, C[k]$, initialized to 0.

- Let's try a hash function h from [d] to [k] for some k that we decide later.
- Maintain counters $C[1], \dots, C[k]$, initialized to 0.
- When i_t arrives, increase $C[h(i_t)]$ by 1.

- Let's try a hash function *h* from [*d*] to [*k*] for some *k* that we decide later.
- Maintain counters $C[1], \dots, C[k]$, initialized to 0.
- When i_t arrives, increase $C[h(i_t)]$ by 1.
- In the end, to estimate x_j , we return C[h(j)].

- Let's try a hash function *h* from [*d*] to [*k*] for some *k* that we decide later.
- Maintain counters $C[1], \dots, C[k]$, initialized to 0.
- When i_t arrives, increase $C[h(i_t)]$ by 1.
- In the end, to estimate x_j , we return C[h(j)].
- Clearly, C[h(j)] is an overestimate of x_i due to clashes.

- Let's try a hash function h from [d] to [k] for some k that we decide later.
- Maintain counters $C[1], \dots, C[k]$, initialized to 0.
- When i_t arrives, increase $C[h(i_t)]$ by 1.
- In the end, to estimate x_j , we return C[h(j)].
- Clearly, C[h(j)] is an overestimate of x_j due to clashes.
- How many clashes are there?

- Let's try a hash function h from [d] to [k] for some k that we decide later.
- Maintain counters $C[1], \dots, C[k]$, initialized to 0.
- When i_t arrives, increase $C[h(i_t)]$ by 1.
- In the end, to estimate x_j , we return C[h(j)].
- Clearly, C[h(j)] is an overestimate of x_j due to clashes.
- How many clashes are there?
 - If h is sampled from a universal hash family, in expectation $C[h(j)] \le x_j + \frac{n}{k}$.

- Let's try a hash function h from [d] to [k] for some k that we decide later.
- Maintain counters $C[1], \dots, C[k]$, initialized to 0.
- When i_t arrives, increase $C[h(i_t)]$ by 1.
- In the end, to estimate x_j , we return C[h(j)].
- Clearly, C[h(j)] is an overestimate of x_j due to clashes.
- How many clashes are there?
 - If h is sampled from a universal hash family, in expectation $C[h(j)] \le x_j + \frac{n}{k}$.
 - If we set $k = \frac{1}{\epsilon}$, this would give an estimate with ϵn additive error in expectation.

- Let's try a hash function h from [d] to [k] for some k that we decide later.
- Maintain counters $C[1], \dots, C[k]$, initialized to 0.
- When i_t arrives, increase $C[h(i_t)]$ by 1.
- In the end, to estimate x_j , we return C[h(j)].
- Clearly, C[h(j)] is an overestimate of x_j due to clashes.
- How many clashes are there?
 - If h is sampled from a universal hash family, in expectation $C[h(j)] \le x_j + \frac{n}{L}$.
 - If we set $k = \frac{1}{\epsilon}$, this would give an estimate with ϵn additive error in expectation.
 - Let's try pushing the guarantee to "with high probability" by repetitions!

The Count-Min algorithm by Cormode and Muthukrishnan (2005):

• Sample ℓ hash functions $h_1, \dots, h_\ell : [d] \to [k]$ independently from a universal hash family; let k be $\frac{2}{\epsilon}$.

The COUNT-MIN algorithm by Cormode and Muthukrishnan (2005):

- Sample ℓ hash functions $h_1, \dots, h_\ell : [d] \to [k]$ independently from a universal hash family; let k be $\frac{2}{\epsilon}$.
- Maintain counters $C_1[1], \dots, C_1[k], C_2[1], \dots, C_\ell[k], \dots, C_\ell[k], \dots, C_\ell[k]$, initialized to 0.

The Count-Min algorithm by Cormode and Muthukrishnan (2005):

- Sample ℓ hash functions $h_1, \dots, h_\ell : [d] \to [k]$ independently from a universal hash family; let k be $\frac{2}{\epsilon}$.
- Maintain counters $C_1[1], \dots, C_1[k], C_2[1], \dots, C_2[k], \dots, C_\ell[1], \dots, C_\ell[k]$, initialized to 0.
- When i_t arrives, for $j = 1, \dots, \ell$, increase $C_i[h_i(i_t)]$ by one.

The COUNT-MIN algorithm by Cormode and Muthukrishnan (2005):

- Sample ℓ hash functions $h_1, \dots, h_\ell : [d] \to [k]$ independently from a universal hash family; let k be $\frac{2}{\epsilon}$.
- Maintain counters $C_1[1], \dots, C_1[k], C_2[1], \dots, C_\ell[k], \dots, C_\ell[k], \dots, C_\ell[k]$, initialized to 0.
- When i_t arrives, for $j = 1, \dots, \ell$, increase $C_j[h_j(i_t)]$ by one.
- At the end, to estimate x_j , return min $\{C_1[h_1(j)], \dots, C_\ell[h_\ell(j)]\}$.

4/11

• For each $j \in [d]$ and $i \in [\ell]$, $x_j \le C_i[h_i(j)]$, so the output is never smaller than x_i .

- For each $j \in [d]$ and $i \in [\ell]$, $x_j \le C_i[h_i(j)]$, so the output is never smaller than x_j .
- For each $j \in [d]$ and $i \in [\ell]$, let $Y_{i,j}$ be the number of clashes of j by h_i , then $C_i[h_i(j)] \le x_i + Y_{i,j}$.

- For each $j \in [d]$ and $i \in [\ell]$, $x_j \le C_i[h_i(j)]$, so the output is never smaller than x_j .
- For each $j \in [d]$ and $i \in [\ell]$, let $Y_{i,j}$ be the number of clashes of j by h_i , then $C_i[h_i(j)] \le x_j + Y_{i,j}$.
 - By universality, $\mathbf{E}[Y_{ij}] \leq \frac{n}{k}$.

- For each $j \in [d]$ and $i \in [\ell]$, $x_i \leq C_i[h_i(j)]$, so the output is never smaller than x_i .
- For each $j \in [d]$ and $i \in [\ell]$, let $Y_{i,j}$ be the number of clashes of j by h_i , then $C_i[h_i(j)] \leq x_i + Y_{i,i}$.

 - By universality, E[Y_{ij}] ≤ n/k.
 By Markov inequality, Pr[Y_{ij} ≥ 2n/k = εn] ≤ 1/2.

- For each $j \in [d]$ and $i \in [\ell]$, $x_i \leq C_i[h_i(j)]$, so the output is never smaller than x_i .
- For each $j \in [d]$ and $i \in [\ell]$, let $Y_{i,j}$ be the number of clashes of j by h_i , then $C_i[h_i(j)] \leq x_i + Y_{i,i}$.

 - By universality, E[Y_{ij}] ≤ n/k.
 By Markov inequality, Pr[Y_{ij} ≥ 2n/k = εn] ≤ 1/2.
- By independence, $\Pr[Y_{ii} \ge \epsilon n, \forall i] \le 2^{-\ell}$.

- For each $j \in [d]$ and $i \in [\ell]$, $x_i \leq C_i[h_i(j)]$, so the output is never smaller than x_i .
- For each $j \in [d]$ and $i \in [\ell]$, let $Y_{i,j}$ be the number of clashes of j by h_i , then $C_i[h_i(j)] \leq x_i + Y_{i,i}$.

 - By universality, E[Y_{ij}] ≤ n/k.
 By Markov inequality, Pr[Y_{ij} ≥ 2n/k = εn] ≤ 1/2.
- By independence, $\Pr[Y_{ii} \ge \epsilon n, \forall i] \le 2^{-\ell}$.
- Therefore, for some $\ell = O(\log d)$, with high probability our estimate is correct within additive ϵn error for all coordinates of x.

5/11

- For each $j \in [d]$ and $i \in [\ell]$, $x_i \leq C_i[h_i(j)]$, so the output is never smaller than x_i .
- For each $j \in [d]$ and $i \in [\ell]$, let $Y_{i,j}$ be the number of clashes of j by h_i , then $C_i[h_i(j)] \leq x_i + Y_{i,i}$.

 - By universality, $\mathbf{E}[Y_{ij}] \leq \frac{n}{k}$. By Markov inequality, $\mathbf{Pr}[Y_{ij} \geq \frac{2n}{k} = \epsilon n] \leq \frac{1}{2}$.
- By independence, $\Pr[Y_{ii} \ge \epsilon n, \forall i] \le 2^{-\ell}$.
- Therefore, for some $\ell = O(\log d)$, with high probability our estimate is correct within additive ϵn error for all coordinates of x.
- Space usage:
 - Maintaining the counters: there are $k\ell = \frac{2}{\epsilon} \log d$ counters, each taking $O(\log n)$ space.

5/11

- For each $j \in [d]$ and $i \in [\ell]$, $x_j \le C_i[h_i(j)]$, so the output is never smaller than x_j .
- For each $j \in [d]$ and $i \in [\ell]$, let $Y_{i,j}$ be the number of clashes of j by h_i , then $C_i[h_i(j)] \le x_j + Y_{i,j}$.
 - By universality, $\mathbf{E}[Y_{ij}] \leq \frac{n}{k}$.
 - By Markov inequality, $\Pr[Y_{ij} \ge \frac{2n}{k} = \epsilon n] \le \frac{1}{2}$.
- By independence, $\Pr[Y_{ij} \ge \epsilon n, \forall i] \le 2^{-\ell}$.
- Therefore, for some $\ell = O(\log d)$, with high probability our estimate is correct within additive ϵn error for all coordinates of x.
- Space usage:
 - Maintaining the counters: there are $k\ell=\frac{2}{\epsilon}\log d$ counters, each taking $O(\log n)$ space.
 - Maintaining the hash functions: there are $\ell = O(\log d)$ of them, each taking $O(\log d)$ space.

• Our streaming model so far: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.

- Our streaming model so far: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.

- Our streaming model so far: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- Slight generalization: each data point at time t is a pair (i_t, Δ_t) :
 - i_t is the index
 - Δ_t is the *increment* of the count at index i_t
- Our streaming problems so far are special cases when all $\Delta_t = 1$.

- Our streaming model so far: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- Slight generalization: each data point at time t is a pair (i_t, Δ_t) :
 - i_t is the index
 - Δ_t is the *increment* of the count at index i_t
- Our streaming problems so far are special cases when all $\Delta_t = 1$.
- If Δ_t are positive real numbers, this is called the *cash register* model.

- Our streaming model so far: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- Slight generalization: each data point at time t is a pair (i_t, Δ_t) :
 - i_t is the index
 - Δ_t is the *increment* of the count at index i_t
- ullet Our streaming problems so far are special cases when all $\Delta_t=1$.
- If Δ_t are positive real numbers, this is called the *cash register* model.
- If Δ_t are allowed to be negative, but every frequency counter x_j is guaranteed to be non-negative at all time, this is called the *strict* turnstile model.

6/11

- Our streaming model so far: the stream $i_1, \ldots, i_n \in [d] := \{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- Slight generalization: each data point at time t is a pair (i_t, Δ_t) :
 - i_t is the index
 - Δ_t is the *increment* of the count at index i_t
- Our streaming problems so far are special cases when all $\Delta_t = 1$.
- If Δ_t are positive real numbers, this is called the *cash register* model.
- If Δ_t are allowed to be negative, but every frequency counter x_j is guaranteed to be non-negative at all time, this is called the *strict* turnstile model.
- If Δ_t can be negative, and x_j 's can be negative as well, this is called the *turnstile* model.

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general settings?

• In cash register model: Δ_t are positive real numbers.

- In cash register model: Δ_t are positive real numbers.
 - Count-Min still works, just increase the counters by Δ_t ; the error term is relaxed to $\epsilon ||x||_1$.

- In cash register model: Δ_t are positive real numbers.
 - Count-Min still works, just increase the counters by Δ_t ; the error term is relaxed to $\epsilon ||x||_1$.
 - Recall $||x||_1 = \sum_i |x_i|$.

- In cash register model: Δ_t are positive real numbers.
 - Count-Min still works, just increase the counters by Δ_t ; the error term is relaxed to $\epsilon ||x||_1$.
 - Recall $||x||_1 = \sum_i |x_i|$.
- In the strict turnstile model, Δ_t are allowed to be negative, but every frequency counter x_i is guaranteed to be non-negative at all time.

- In cash register model: Δ_t are positive real numbers.
 - Count-Min still works, just increase the counters by Δ_t ; the error term is relaxed to $\epsilon ||x||_1$.
 - Recall $||x||_1 = \sum_i |x_i|$.
- In the strict turnstile model, Δ_t are allowed to be negative, but every frequency counter x_i is guaranteed to be non-negative at all time.
 - Count-Min still works.

Does Count-Min still work in these more general settings?

- In cash register model: Δ_t are positive real numbers.
 - Count-Min still works, just increase the counters by Δ_t ; the error term is relaxed to $\epsilon ||x||_1$.
 - Recall $||x||_1 = \sum_i |x_i|$.
- In the strict turnstile model, Δ_t are allowed to be negative, but every frequency counter x_i is guaranteed to be non-negative at all time.
 - Count-Min still works.
- In the turnstile model, Δ_t can be negative, and x_j 's can be negative as well.

7 / 11

- In cash register model: Δ_t are positive real numbers.
 - Count-Min still works, just increase the counters by Δ_t ; the error term is relaxed to $\epsilon ||x||_1$.
 - Recall $||x||_1 = \sum_i |x_i|$.
- In the strict turnstile model, Δ_t are allowed to be negative, but every frequency counter x_i is guaranteed to be non-negative at all time.
 - Count-Min still works.
- In the turnstile model, Δ_t can be negative, and x_j 's can be negative as well.
 - The analysis of Count-Min is problematic in this setting. Markov inequality needs nonnegativity!

• What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.

- What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.
- $C_i[h_i(j)] = x_j + \text{error.}$

- What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.
- $C_i[h_i(j)] = x_j + \text{error.}$
 - When "error" is all nonnegative, we can take minimum among $C_i[h_i(j)]$. But when error can be negative, taking the minimum may seriously underestimate x_i .

- What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.
- $C_i[h_i(j)] = x_j + \text{error.}$
 - When "error" is all nonnegative, we can take minimum among $C_i[h_i(j)]$. But when error can be negative, taking the minimum may seriously underestimate x_i .
 - Similarly, taking the maximum may overestimate x_i .

- What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.
- $C_i[h_i(j)] = x_j + \text{error.}$
 - When "error" is all nonnegative, we can take minimum among $C_i[h_i(j)]$. But when error can be negative, taking the minimum may seriously underestimate x_i .
 - Similarly, taking the maximum may overestimate x_i .
 - It is natural to try the *median*.

- What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.
- $C_i[h_i(j)] = x_j + \text{error.}$
 - When "error" is all nonnegative, we can take minimum among $C_i[h_i(j)]$. But when error can be negative, taking the minimum may seriously underestimate x_i .
 - Similarly, taking the maximum may overestimate x_j .
 - It is natural to try the *median*.

Claim (Problem 1 in Problem Set 3)

Let Z_1, \dots, Z_n be i.i.d. random variables. Let M be a median. There is a constant c > 0 such that:

- If $\Pr[Z_i \ge t] \le p < \frac{1}{4}$, then $\Pr[M \ge t] \le e^{-cn}$.
- If $\Pr[Z_i \le t] \le p < \frac{1}{4}$, then $\Pr[M \le t] \le e^{-cn}$.

- Algorithm: same setup and initialization as before
 - At input (i_t, Δ_t) , for $i = 1, \dots, \ell$, increase counter $C_i[h_i(i_t)]$ by Δ_t
 - In the end, as an estimate of x_j , output a median of $\{C_1[h_1(j)], \dots, C_\ell[h_\ell(j)]\}.$

- Algorithm: same setup and initialization as before
 - At input (i_t, Δ_t) , for $i = 1, \dots, \ell$, increase counter $C_i[h_i(i_t)]$ by Δ_t
 - In the end, as an estimate of x_j , output a median of $\{C_1[h_1(j)], \dots, C_\ell[h_\ell(j)]\}.$
- Consider any fixed index $j \in [d]$.

- Algorithm: same setup and initialization as before
 - At input (i_t, Δ_t) , for $i = 1, \dots, \ell$, increase counter $C_i[h_i(i_t)]$ by Δ_t
 - In the end, as an estimate of x_j , output a median of $\{C_1[h_1(j)], \dots, C_\ell[h_\ell(j)]\}.$
- Consider any fixed index $j \in [d]$.
 - Which indices may cause positive error? $P := \{j' : x_{j'} > 0\}$.

- Algorithm: same setup and initialization as before
 - At input (i_t, Δ_t) , for $i = 1, \dots, \ell$, increase counter $C_i[h_i(i_t)]$ by Δ_t
 - In the end, as an estimate of x_j , output a median of $\{C_1[h_1(j)], \dots, C_\ell[h_\ell(j)]\}.$
- Consider any fixed index $j \in [d]$.
 - Which indices may cause positive error? $P := \{j' : x_{j'} > 0\}$.
 - Similarly, indices that may cause negative error are $N := \{j' : x_{j'} < 0\}$.

- Algorithm: same setup and initialization as before
 - At input (i_t, Δ_t) , for $i = 1, \dots, \ell$, increase counter $C_i[h_i(i_t)]$ by Δ_t
 - In the end, as an estimate of x_j , output a median of $\{C_1[h_1(j)], \dots, C_\ell[h_\ell(j)]\}.$
- Consider any fixed index $j \in [d]$.
 - Which indices may cause positive error? $P := \{j' : x_{j'} > 0\}$.
 - Similarly, indices that may cause negative error are $N := \{j' : x_{j'} < 0\}$.
- For any counter C_i , the expected error caused by indices in P is $\leq \frac{||x||_1}{k}$.

- Algorithm: same setup and initialization as before
 - At input (i_t, Δ_t) , for $i = 1, \dots, \ell$, increase counter $C_i[h_i(i_t)]$ by Δ_t
 - In the end, as an estimate of x_j , output a median of $\{C_1[h_1(j)], \dots, C_\ell[h_\ell(j)]\}.$
- Consider any fixed index $j \in [d]$.
 - Which indices may cause positive error? $P := \{j' : x_{j'} > 0\}$.
 - Similarly, indices that may cause negative error are $N := \{j' : x_{j'} < 0\}$.
- For any counter C_i , the expected error caused by indices in P is $\leq \frac{||x||_1}{k}$.
- By Markov inequality, $\Pr[\sum_{j' \in P \setminus \{j\}} x_{j'} \mathbb{1}_{h_i(j) = h_i(j')} \ge \frac{4||x||_1}{k}] \le \frac{1}{4}$.

9/11

- Algorithm: same setup and initialization as before
 - At input (i_t, Δ_t) , for $i = 1, \dots, \ell$, increase counter $C_i[h_i(i_t)]$ by Δ_t
 - In the end, as an estimate of x_j , output a median of $\{C_1[h_1(j)], \dots, C_\ell[h_\ell(j)]\}.$
- Consider any fixed index $j \in [d]$.
 - Which indices may cause positive error? $P := \{j' : x_{j'} > 0\}$.
 - Similarly, indices that may cause negative error are $N := \{j' : x_{j'} < 0\}$.
- For any counter C_i , the expected error caused by indices in P is $\leq \frac{||x||_1}{k}$.
- By Markov inequality, $\Pr[\sum_{j' \in P \setminus \{j\}} x_{j'} \mathbb{1}_{h_i(j) = h_i(j')} \ge \frac{4||x||_1}{k}] \le \frac{1}{4}$.
- Similarly, $\Pr[\sum_{j' \in N \setminus \{j\}} |x_{j'}| \mathbb{1}_{h_i(j)=h_i(j')} \ge \frac{4||x||_1}{k}] \le \frac{1}{4}$.

- Algorithm: same setup and initialization as before
 - At input (i_t, Δ_t) , for $i = 1, \dots, \ell$, increase counter $C_i[h_i(i_t)]$ by Δ_t
 - In the end, as an estimate of x_j , output a median of $\{C_1[h_1(j)], \dots, C_\ell[h_\ell(j)]\}.$
- Consider any fixed index $j \in [d]$.
 - Which indices may cause positive error? $P := \{j' : x_{j'} > 0\}$.
 - Similarly, indices that may cause negative error are $N := \{j' : x_{j'} < 0\}$.
- For any counter C_i , the expected error caused by indices in P is $\leq \frac{||x||_1}{k}$.
- By Markov inequality, $\Pr[\sum_{j' \in P \setminus \{j\}} x_{j'} \mathbb{1}_{h_i(j) = h_i(j')} \ge \frac{4||x||_1}{k}] \le \frac{1}{4}$.
- Similarly, $\Pr[\sum_{j' \in N \setminus \{j\}} |x_{j'}| \mathbb{1}_{h_i(j)=h_i(j')} \ge \frac{4||x||_1}{k}] \le \frac{1}{4}$.
- Setting $k = \frac{4}{\epsilon}$, $\ell = O(\log d)$, with high probability our output for every coordinate is correct within $\epsilon ||x||_1$ additive error.

- ullet We can do a bit better to control the error term to within $\epsilon ||x||_2$
 - Recall that $||x||_p = \left(\sum_i x_i^p\right)^{1/p}$ decreases with p for $p \in (0, \infty)$.

- We can do a bit better to control the error term to within $\epsilon ||x||_2$
 - Recall that $||x||_p = (\sum_i x_i^p)^{1/p}$ decreases with p for $p \in (0, \infty)$.
 - Common bound: $||x||_2 \ge \frac{1}{\sqrt{n}}||x||_1$ by Cauchy-Schwartz

- We can do a bit better to control the error term to within $\epsilon ||x||_2$
 - Recall that $||x||_p = \left(\sum_i x_i^p\right)^{1/p}$ decreases with p for $p \in (0, \infty)$.
 - Common bound: $||x||_2 \ge \frac{1}{\sqrt{n}}||x||_1$ by Cauchy-Schwartz
- COUNT-SKETCH due to Charikar, Chen, Farach-Colton (2004)
 - Same setup as before, except that now each h_i should be drawn from a pairwise independent hash family; in addition, maintain hash functions $g_1, \ldots, g_\ell : [d] \to \{+1, -1\}$ each drawn independently from a pairwise independent hash family.

- We can do a bit better to control the error term to within $\epsilon ||x||_2$
 - Recall that $||x||_p = \left(\sum_i x_i^p\right)^{1/p}$ decreases with p for $p \in (0, \infty)$.
 - Common bound: $||x||_2 \ge \frac{1}{\sqrt{n}}||x||_1$ by Cauchy-Schwartz
- COUNT-SKETCH due to Charikar, Chen, Farach-Colton (2004)
 - Same setup as before, except that now each h_i should be drawn from a pairwise independent hash family; in addition, maintain hash functions $g_1, \ldots, g_\ell : [d] \to \{+1, -1\}$ each drawn independently from a pairwise independent hash family.
 - At input (i_t, Δ_t) , for $i = 1, \dots, \ell$, increase counter $C_i[h_i(i_t)]$ by $g_{i_t}\Delta_t$.
 - In the end, for index $j \in [d]$, output a median M among $g_1(j)C_1[h_1(j)], \dots, g_\ell(j)C_\ell[h_\ell(j)]$.

• For any $i \in [\ell]$ and $j \in [d]$. By pairwise independence of $g_i(\cdot)$'s,

$$\mathbf{E}\left[C_i[h_i(j)]g_i(j)\right] = x_j + \mathbf{E}\left[\sum_{j'\neq j}g_i(j)g_i(j')x_{j'}\mathbb{1}_{h_i(j')=h_i(j)}\right] = x_j.$$

• For any $i \in [\ell]$ and $j \in [d]$. By pairwise independence of $g_i(\cdot)$'s,

$$\mathbf{E} [C_i[h_i(j)]g_i(j)] = x_j + \mathbf{E} \left[\sum_{j' \neq j} g_i(j)g_i(j')x_{j'} \mathbb{1}_{h_i(j') = h_i(j)} \right] = x_j.$$

• We bound the deviation by Chebyshev inequality:

• For any $i \in [\ell]$ and $j \in [d]$. By pairwise independence of $g_i(\cdot)$'s,

$$\mathbf{E}\left[C_i[h_i(j)]g_i(j)\right] = x_j + \mathbf{E}\left[\sum_{j'\neq j}g_i(j)g_i(j')x_{j'}\mathbb{1}_{h_i(j')=h_i(j)}\right] = x_j.$$

We bound the deviation by Chebyshev inequality:

$$\operatorname{Var}\left[C_{i}[h_{i}(j)]g_{i}(j)\right] = \operatorname{Var}\left[\sum_{j' \neq j} g_{i}(j)g_{i}(j')x_{j'} \mathbb{1}_{h_{i}(j') = h_{i}(j)}\right] \leq \frac{||x||_{2}^{2}}{k}.$$

• For any $i \in [\ell]$ and $j \in [d]$. By pairwise independence of $g_i(\cdot)$'s,

$$\mathbf{E} [C_i[h_i(j)]g_i(j)] = x_j + \mathbf{E} \left[\sum_{j' \neq j} g_i(j)g_i(j')x_{j'} \mathbb{1}_{h_i(j') = h_i(j)} \right] = x_j.$$

We bound the deviation by Chebyshev inequality:

$$\operatorname{Var}\left[C_{i}[h_{i}(j)]g_{i}(j)\right] = \operatorname{Var}\left[\sum_{j' \neq j} g_{i}(j)g_{i}(j')x_{j'} \mathbb{1}_{h_{i}(j') = h_{i}(j)}\right] \leq \frac{||x||_{2}^{2}}{k}.$$

$$\Pr\left[|g_i(j)C_i[h_i(j)] - x_j| \ge \epsilon ||x||_2\right] \le \frac{||x||_2^2}{k\epsilon^2 ||x||_2^2} = \frac{1}{k\epsilon^2}$$

• For any $i \in [\ell]$ and $j \in [d]$. By pairwise independence of $g_i(\cdot)$'s,

$$\mathbf{E} [C_i[h_i(j)]g_i(j)] = x_j + \mathbf{E} \left[\sum_{j' \neq j} g_i(j)g_i(j')x_{j'} \mathbb{1}_{h_i(j') = h_i(j)} \right] = x_j.$$

We bound the deviation by Chebyshev inequality:

$$\operatorname{Var}\left[C_{i}[h_{i}(j)]g_{i}(j)\right] = \operatorname{Var}\left[\sum_{j' \neq j} g_{i}(j)g_{i}(j')x_{j'} \mathbb{1}_{h_{i}(j') = h_{i}(j)}\right] \leq \frac{||x||_{2}^{2}}{k}.$$

$$\Pr\left[|g_i(j)C_i[h_i(j)] - x_j| \ge \epsilon ||x||_2\right] \le \frac{||x||_2^2}{k\epsilon^2 ||x||_2^2} = \frac{1}{k\epsilon^2}$$

We can take $k = O(\frac{1}{\epsilon^2})$.

