## Learning Goals

- Define variance and standard deviation
- State Chebyshev inequality and Chernoff inequality
- Compare the conditions and strengths of Markov, Chebyshev and Chernoff inequalities
- Understand the main idea and steps in the proofs of these bounds
- Intuition for the bounds given by the simplified forms of the Chernoff bound


## Chebyshev Inequality

## Definition

The variance of a random variable $X$ is
$\operatorname{Var}[X]:=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$. Its square root, $\sqrt{\operatorname{Var}[X]}$, is the standard deviation of $X$, and is often denoted as $\sigma$.

## Chebyshev Inequality

## Definition

The variance of a random variable $X$ is
$\operatorname{Var}[X]:=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$. Its square root, $\sqrt{\operatorname{Var}[X]}$, is the standard deviation of $X$, and is often denoted as $\sigma$.

Theorem (Chebyshev Inequality)
For any $\alpha>0, \operatorname{Pr}[|X-\mathbf{E}[X]|>\alpha \sigma] \leq \frac{1}{\alpha^{2}}$.

## Chebyshev Inequality

## Definition

The variance of a random variable $X$ is
$\operatorname{Var}[X]:=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$. Its square root, $\sqrt{\operatorname{Var}[X]}$, is the standard deviation of $X$, and is often denoted as $\sigma$.

Theorem (Chebyshev Inequality)
For any $\alpha>0, \operatorname{Pr}[|X-\mathbf{E}[X]|>\alpha \sigma] \leq \frac{1}{\alpha^{2}}$.

## Proof.

Apply Markov inequality to the random variable $(X-\mathbf{E}[X])^{2}$ :

$$
\operatorname{Pr}[|X-\mathbf{E}[X]| \geq \alpha \sigma]=\operatorname{Pr}\left[(X-\mathbf{E}[X])^{2} \geq \alpha^{2} \operatorname{Var}[X]\right] \leq \frac{1}{\alpha^{2}}
$$

## Chebyshev Inequality

## Definition

The variance of a random variable $X$ is
$\operatorname{Var}[X]:=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$. Its square root, $\sqrt{\operatorname{Var}[X]}$, is the standard deviation of $X$, and is often denoted as $\sigma$.

Theorem (Chebyshev Inequality)
For any $\alpha>0, \operatorname{Pr}[|X-\mathbf{E}[X]|>\alpha \sigma] \leq \frac{1}{\alpha^{2}}$.

## Proof.

Apply Markov inequality to the random variable $(X-\mathbf{E}[X])^{2}$ :

$$
\operatorname{Pr}[|X-\mathbf{E}[X]| \geq \alpha \sigma]=\operatorname{Pr}\left[(X-\mathbf{E}[X])^{2} \geq \alpha^{2} \operatorname{Var}[X]\right] \leq \frac{1}{\alpha^{2}}
$$

## Question

Distribution where Chebyshev inequality is tight?

## Question

Distribution where Chebyshev inequality is tight?
It must be distributions for which the Markov inequality in the proof is tight.

## Question

Distribution where Chebyshev inequality is tight?
It must be distributions for which the Markov inequality in the proof is tight.
A distribution where $|X-\mathbf{E}[X]|$ takes two values: 0 and $\alpha \sigma$

## Question

Distribution where Chebyshev inequality is tight?
It must be distributions for which the Markov inequality in the proof is tight.
A distribution where $|X-\mathbf{E}[X]|$ takes two values: 0 and $\alpha \sigma$ $\Rightarrow X$ takes three values: $\mathbf{E}[X], \mathbf{E}[X]+\alpha \sigma$ and $\mathbf{E}[X]-\alpha \sigma$.

## Useful Facts for Independent Random Variables

## Lemma

If $X$ and $Y$ are independent random variables, then $\mathbf{E}[X Y]=\mathbf{E}[X] \cdot \mathbf{E}[Y]$, and $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.

## Useful Facts for Independent Random Variables

## Lemma

If $X$ and $Y$ are independent random variables, then $\mathbf{E}[X Y]=\mathbf{E}[X] \cdot \mathbf{E}[Y]$, and $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.

## Proof.

$$
\mathbf{E}[X Y]=\sum_{x, y}(x y) \operatorname{Pr}[X=x, Y=y]
$$

## Useful Facts for Independent Random Variables

## Lemma

If $X$ and $Y$ are independent random variables, then $\mathbf{E}[X Y]=\mathbf{E}[X] \cdot \mathbf{E}[Y]$, and $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.

## Proof.

$$
\begin{aligned}
& \mathbf{E}[X Y]=\sum_{x, y}(x y) \operatorname{Pr}[X=x, Y=y] \\
& =\sum_{x, y}(x y) \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]
\end{aligned}
$$

## Useful Facts for Independent Random Variables

## Lemma

If $X$ and $Y$ are independent random variables, then $\mathbf{E}[X Y]=\mathbf{E}[X] \cdot \mathbf{E}[Y]$, and $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.

## Proof.

$$
\begin{aligned}
& \mathbf{E}[X Y]=\sum_{x, y}(x y) \operatorname{Pr}[X=x, Y=y] \\
& =\sum_{x, y}(x y) \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \\
& =\sum_{x} x \operatorname{Pr}[X=x] \sum_{y} y \operatorname{Pr}[Y=y]=\mathbf{E}[X] \cdot \mathbf{E}[Y] .
\end{aligned}
$$

## Useful Facts for Independent Random Variables

## Lemma

If $X$ and $Y$ are independent random variables, then $\mathbf{E}[X Y]=\mathbf{E}[X] \cdot \mathbf{E}[Y]$, and $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.

## Proof.

$$
\begin{aligned}
& \mathbf{E}[X Y]=\sum_{x, y}(x y) \operatorname{Pr}[X=x, Y=y] \\
& =\sum_{x, y}(x y) \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \\
& =\sum_{x} x \operatorname{Pr}[X=x] \sum_{y} y \operatorname{Pr}[Y=y]=\mathbf{E}[X] \cdot \mathbf{E}[Y] .
\end{aligned}
$$

## Useful Facts for Independent Random Variables

## Lemma

If $X$ and $Y$ are independent random variables, then $\mathbf{E}[X Y]=\mathbf{E}[X] \cdot \mathbf{E}[Y]$, and $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.

## Proof.

$$
\begin{aligned}
& \mathbf{E}[X Y]=\sum_{x, y}(x y) \operatorname{Pr}[X=x, Y=y] \\
& =\sum_{x, y}(x y) \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \\
& =\sum_{x} x \operatorname{Pr}[X=x] \sum_{y} y \operatorname{Pr}[Y=y]=\mathbf{E}[X] \cdot \mathbf{E}[Y] .
\end{aligned}
$$

Without independence, $\operatorname{Var}[X+Y]$ in general is not equal to $\operatorname{Var}[X]+\operatorname{Var}[Y]$.

## Application of Chebyshev Inequality: Weak Law of Large Numbers

## Theorem

Let $X_{1}, X_{2}, \cdots$ be independently, identically distributed (i.i.d.) random variables, and each has finite variance. For each $n \geq 1$, let $\bar{X}_{n}$ be $\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then for any $\delta>0, \lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\bar{X}_{n}-\mathbf{E}\left[\bar{X}_{n}\right]\right|>\delta\right]=0$.

## Application of Chebyshev Inequality: Weak Law of Large Numbers

## Theorem

Let $X_{1}, X_{2}, \cdots$ be independently, identically distributed (i.i.d.) random variables, and each has finite variance. For each $n \geq 1$, let $\bar{X}_{n}$ be $\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then for any $\delta>0, \lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\bar{X}_{n}-\mathbf{E}\left[\bar{X}_{n}\right]\right|>\delta\right]=0$.

## Proof.

By independence, $\operatorname{Var}\left[\bar{X}_{n}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]=\frac{1}{n} \operatorname{Var}\left[X_{1}\right]$.

## Application of Chebyshev Inequality: Weak Law of Large Numbers

## Theorem

Let $X_{1}, X_{2}, \cdots$ be independently, identically distributed (i.i.d.) random variables, and each has finite variance. For each $n \geq 1$, let $\bar{X}_{n}$ be $\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then for any $\delta>0, \lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\bar{X}_{n}-\mathbf{E}\left[\bar{X}_{n}\right]\right|>\delta\right]=0$.

## Proof.

By independence, $\operatorname{Var}\left[\bar{X}_{n}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]=\frac{1}{n} \operatorname{Var}\left[X_{1}\right]$.
By Chebyshev inequality, $\operatorname{Pr}\left[\left|\bar{X}_{n}-\mathbf{E}\left[\bar{X}_{n}\right]\right|>\delta\right] \leq \frac{\operatorname{Var}\left[X_{1}\right]}{n \delta^{2}}$.

## Application of Chebyshev Inequality: Weak Law of Large Numbers

## Theorem

Let $X_{1}, X_{2}, \cdots$ be independently, identically distributed (i.i.d.) random variables, and each has finite variance. For each $n \geq 1$, let $\bar{X}_{n}$ be $\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then for any $\delta>0, \lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\bar{X}_{n}-\mathbf{E}\left[\bar{X}_{n}\right]\right|>\delta\right]=0$.

## Proof.

By independence, $\operatorname{Var}\left[\bar{X}_{n}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]=\frac{1}{n} \operatorname{Var}\left[X_{1}\right]$.
By Chebyshev inequality, $\operatorname{Pr}\left[\left|\bar{X}_{n}-\mathbf{E}\left[\bar{X}_{n}\right]\right|>\delta\right] \leq \frac{\operatorname{Var}\left[X_{1}\right]}{n \delta^{2}}$.
The right hand side goes to 0 as $n$ goes to infinity.

## Landscape so far

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
- Non-negativity is required.


## Landscape so far

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
- Non-negativity is required.
- If the variacne is small, Chebyshev may give tighter bounds. It measures the deviation as a multiple of the standard deviation.
- In the weak law of large numbers, the dependence of the bound on both $n$ and $\frac{1}{\delta}$ is polynomial.


## Landscape so far

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
- Non-negativity is required.
- If the variacne is small, Chebyshev may give tighter bounds. It measures the deviation as a multiple of the standard deviation.
- In the weak law of large numbers, the dependence of the bound on both $n$ and $\frac{1}{\delta}$ is polynomial.
- We often need tighter bounds.


## Landscape so far

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
- Non-negativity is required.
- If the variacne is small, Chebyshev may give tighter bounds. It measures the deviation as a multiple of the standard deviation.
- In the weak law of large numbers, the dependence of the bound on both $n$ and $\frac{1}{\delta}$ is polynomial.
- We often need tighter bounds.
- Methodologically, the proof of Chebyshev inequality amplifies the deviation $|X-\mathbf{E}[X]|$ by taking its square.


## Landscape so far

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
- Non-negativity is required.
- If the variacne is small, Chebyshev may give tighter bounds. It measures the deviation as a multiple of the standard deviation.
- In the weak law of large numbers, the dependence of the bound on both $n$ and $\frac{1}{\delta}$ is polynomial.
- We often need tighter bounds.
- Methodologically, the proof of Chebyshev inequality amplifies the deviation $|X-\mathbf{E}[X]|$ by taking its square.
- Take a nonnegative, fast growing function $f(\cdot)$ and apply Markov inequality to $f(X)$.


## Landscape so far

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
- Non-negativity is required.
- If the variacne is small, Chebyshev may give tighter bounds. It measures the deviation as a multiple of the standard deviation.
- In the weak law of large numbers, the dependence of the bound on both $n$ and $\frac{1}{\delta}$ is polynomial.
- We often need tighter bounds.
- Methodologically, the proof of Chebyshev inequality amplifies the deviation $|X-\mathbf{E}[X]|$ by taking its square.
- Take a nonnegative, fast growing function $f(\cdot)$ and apply Markov inequality to $f(X)$.
- Chebyshev $\rightarrow$ Markov $\rightarrow$ Kolmogorov


## Landscape so far

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
- Non-negativity is required.
- If the variacne is small, Chebyshev may give tighter bounds. It measures the deviation as a multiple of the standard deviation.
- In the weak law of large numbers, the dependence of the bound on both $n$ and $\frac{1}{\delta}$ is polynomial.
- We often need tighter bounds.
- Methodologically, the proof of Chebyshev inequality amplifies the deviation $|X-\mathbf{E}[X]|$ by taking its square.
- Take a nonnegative, fast growing function $f(\cdot)$ and apply Markov inequality to $f(X)$.
- Chebyshev $\rightarrow$ Markov $\rightarrow$ Kolmogorov
- Bernstein and Chernoff exploited the idea by looking at $f(x)=e^{\lambda x}$.


## Chernoff Bound: I.I.D. Case

Let $X_{1}, \cdots, X_{n}$ be i.i.d. Bernoulli variables, such that $\operatorname{Pr}\left[X_{i}=1\right]=p$ and $\operatorname{Pr}\left[X_{i}=0\right]=q:=1-p$ for each $i$. Define $X=\sum_{i=1}^{n} X_{i}$.

## Theorem (Chernoff Bound)

For any $t>0$,

$$
\operatorname{Pr}[X>(p+t) n] \leq \exp \left\{\left(-(p+t) \ln \frac{p+t}{p}-(q-t) \ln \frac{q-t}{q}\right) n\right\}
$$

## Chernoff Bound: I.I.D. Case

Let $X_{1}, \cdots, X_{n}$ be i.i.d. Bernoulli variables, such that $\operatorname{Pr}\left[X_{i}=1\right]=p$ and $\operatorname{Pr}\left[X_{i}=0\right]=q:=1-p$ for each $i$. Define $X=\sum_{i=1}^{n} X_{i}$.

## Theorem (Chernoff Bound)

For any $t>0$,

$$
\operatorname{Pr}[X>(p+t) n] \leq \exp \left\{\left(-(p+t) \ln \frac{p+t}{p}-(q-t) \ln \frac{q-t}{q}\right) n\right\}
$$

## Proof.

For any $\lambda>0$, by Markov inequality we have

$$
\operatorname{Pr}[X>(p+t) n]=\operatorname{Pr}\left[e^{\lambda X} \geq e^{\lambda(p+t) n}\right] \leq \frac{\mathbf{E}\left[e^{\lambda X}\right]}{e^{\lambda(p+t) n}}
$$

## Chernoff Bound: I.I.D. Case

Let $X_{1}, \cdots, X_{n}$ be i.i.d. Bernoulli variables, such that $\operatorname{Pr}\left[X_{i}=1\right]=p$ and $\operatorname{Pr}\left[X_{i}=0\right]=q:=1-p$ for each $i$. Define $X=\sum_{i=1}^{n} X_{i}$.

## Theorem (Chernoff Bound)

For any $t>0$,

$$
\operatorname{Pr}[X>(p+t) n] \leq \exp \left\{\left(-(p+t) \ln \frac{p+t}{p}-(q-t) \ln \frac{q-t}{q}\right) n\right\} .
$$

## Proof.

For any $\lambda>0$, by Markov inequality we have

$$
\operatorname{Pr}[X>(p+t) n]=\operatorname{Pr}\left[e^{\lambda X} \geq e^{\lambda(p+t) n}\right] \leq \frac{\mathbf{E}\left[e^{\lambda X}\right]}{e^{\lambda(p+t) n}}
$$

By independence, we have $\mathbf{E}\left[e^{\lambda X}\right]=\mathbf{E}\left[e^{\sum_{i} \lambda X_{i}}\right]=\prod_{i} \mathbf{E}\left[e^{\lambda X_{i}}\right]=\left(p e^{\lambda}+q\right)^{n}$.

## Proof of Chernoff Bound (Cont.)

## Proof of Chernoff Bound (Cont.)

So far we have $\operatorname{Pr}[X \geq(p+t) n] \leq\left(\frac{p e^{\lambda}+q}{e^{\lambda(p+t)}}\right)^{n}$.

## Proof of Chernoff Bound (Cont.)

## Proof of Chernoff Bound (Cont.)

So far we have $\operatorname{Pr}[X \geq(p+t) n] \leq\left(\frac{p e^{\lambda}+q}{e^{\lambda(p+t)}}\right)^{n}$.
Take a $\lambda$ that minimizes the RHS: let $e^{\lambda}$ be $\frac{q}{p} \cdot \frac{p+t}{q-t}$, we get the bound in the theorem statement.

## Proof of Chernoff Bound (Cont.)

## Proof of Chernoff Bound (Cont.)

So far we have $\operatorname{Pr}[X \geq(p+t) n] \leq\left(\frac{p e^{\lambda}+q}{e^{\lambda(p+t)}}\right)^{n}$.
Take a $\lambda$ that minimizes the RHS: let $e^{\lambda}$ be $\frac{q}{p} \cdot \frac{p+t}{q-t}$, we get the bound in the theorem statement.

Interpretation:

- Note the exponential decay with $n$;


## Proof of Chernoff Bound (Cont.)

## Proof of Chernoff Bound (Cont.)

So far we have $\operatorname{Pr}[X \geq(p+t) n] \leq\left(\frac{p e^{\lambda}+q}{e^{\lambda(p+t)}}\right)^{n}$.
Take a $\lambda$ that minimizes the RHS: let $e^{\lambda}$ be $\frac{q}{p} \cdot \frac{p+t}{q-t}$, we get the bound in the theorem statement.

Interpretation:

- Note the exponential decay with $n$;
- The negative of the exponent, $(p+t) \log \frac{p+t}{p}+(q-t) \log \frac{q-t}{q}$, is the relative entropy, a.k.a. $K L$-divergence, from the distribution $(p, q)$ to the distribution $(p+t, q-t)$ on the two-point space $\{1,0\}$.


## Proof of Chernoff Bound (Cont.)

## Proof of Chernoff Bound (Cont.)

So far we have $\operatorname{Pr}[X \geq(p+t) n] \leq\left(\frac{p e^{\lambda}+q}{e^{\lambda(p+t)}}\right)^{n}$.
Take a $\lambda$ that minimizes the RHS: let $e^{\lambda}$ be $\frac{q}{p} \cdot \frac{p+t}{q-t}$, we get the bound in the theorem statement.

Interpretation:

- Note the exponential decay with $n$;
- The negative of the exponent, $(p+t) \log \frac{p+t}{p}+(q-t) \log \frac{q-t}{q}$, is the relative entropy, a.k.a. KL-divergence, from the distribution $(p, q)$ to the distribution $(p+t, q-t)$ on the two-point space $\{1,0\}$.
The same proof yields the same bound for $\operatorname{Pr}[X \leq(p-t) n]$.


## Chernoff Bound: Heterogeneous Bernoulli Variables

What if $X_{1}, \cdots, X_{n}$ are independent Bernoulli variables but not identically distributed?

## Chernoff Bound: Heterogeneous Bernoulli Variables

What if $X_{1}, \cdots, X_{n}$ are independent Bernoulli variables but not identically distributed?
Suppose $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$, and $\operatorname{Pr}\left[X_{i}=0\right]=q_{i}$ for each $i$, and let $p=\frac{1}{n} \sum_{i} p_{i}$ and $q=1-p$.

## Chernoff Bound: Heterogeneous Bernoulli Variables

What if $X_{1}, \cdots, X_{n}$ are independent Bernoulli variables but not identically distributed?
Suppose $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$, and $\operatorname{Pr}\left[X_{i}=0\right]=q_{i}$ for each $i$, and let $p=\frac{1}{n} \sum_{i} p_{i}$ and $q=1-p$.
In the proof where we calculated $\mathbf{E}\left[e^{\lambda X}\right]$, we have that it is equal to $\prod_{i}\left(p_{i} e^{\lambda}+q_{i}\right) \leq\left(p e^{\lambda}+q\right)^{n}$ by the AM-GM inequality.

## Chernoff Bound: Heterogeneous Bernoulli Variables

What if $X_{1}, \cdots, X_{n}$ are independent Bernoulli variables but not identically distributed?
Suppose $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$, and $\operatorname{Pr}\left[X_{i}=0\right]=q_{i}$ for each $i$, and let $p=\frac{1}{n} \sum_{i} p_{i}$ and $q=1-p$.
In the proof where we calculated $\mathbf{E}\left[e^{\lambda X}\right]$, we have that it is equal to
$\prod_{i}\left(p_{i} e^{\lambda}+q_{i}\right) \leq\left(p e^{\lambda}+q\right)^{n}$ by the AM-GM inequality.
The rest of the proof follows exactly as before.

## Chernoff Bound: Heterogeneous Bernoulli Variables

What if $X_{1}, \cdots, X_{n}$ are independent Bernoulli variables but not identically distributed?
Suppose $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$, and $\operatorname{Pr}\left[X_{i}=0\right]=q_{i}$ for each $i$, and let $p=\frac{1}{n} \sum_{i} p_{i}$ and $q=1-p$.
In the proof where we calculated $\mathbf{E}\left[e^{\lambda X}\right]$, we have that it is equal to
$\prod_{i}\left(p_{i} e^{\lambda}+q_{i}\right) \leq\left(p e^{\lambda}+q\right)^{n}$ by the AM-GM inequality.
The rest of the proof follows exactly as before.

## Theorem

For any $t>0$,

$$
\operatorname{Pr}[X>(p+t) n] \leq \exp \left\{\left(-(p+t) \ln \frac{p+t}{p}-(q-t) \ln \frac{q-t}{q}\right) n\right\}
$$

## Chernoff Bound: The Hoeffding Extension

What if $X_{1}, \cdots, X_{n}$ always take values from [ 0,1 ] but not necessarily $\{0,1\}$ ? Suppose $\mathbf{E}\left[X_{i}\right]=p_{i}, q_{i}=1-p_{i}$ for each $i$, and let $p=\frac{1}{n} \sum_{i} p_{i}$ and $q=1-p$.

## Chernoff Bound: The Hoeffding Extension

What if $X_{1}, \cdots, X_{n}$ always take values from [0, 1] but not necessarily $\{0,1\}$ ? Suppose $\mathbf{E}\left[X_{i}\right]=p_{i}, q_{i}=1-p_{i}$ for each $i$, and let $p=\frac{1}{n} \sum_{i} p_{i}$ and $q=1-p$. Observation: on [0, 1], $e^{\lambda x} \leq \alpha x+\beta$ for $\alpha=e^{\lambda}-1$ and $\beta=1$.

## Chernoff Bound: The Hoeffding Extension

What if $X_{1}, \cdots, X_{n}$ always take values from [ 0,1 ] but not necessarily $\{0,1\}$ ? Suppose $\mathbf{E}\left[X_{i}\right]=p_{i}, q_{i}=1-p_{i}$ for each $i$, and let $p=\frac{1}{n} \sum_{i} p_{i}$ and $q=1-p$. Observation: on $[0,1], e^{\lambda x} \leq \alpha x+\beta$ for $\alpha=e^{\lambda}-1$ and $\beta=1$. So $\mathbf{E}\left[e^{\lambda X_{i}}\right] \leq \mathbf{E}\left[\left(e^{\lambda}-1\right) X_{i}+1\right]=p_{i} e^{\lambda}+q_{i}$.

## Chernoff Bound: The Hoeffding Extension

What if $X_{1}, \cdots, X_{n}$ always take values from [ 0,1 ] but not necessarily $\{0,1\}$ ? Suppose $\mathbf{E}\left[X_{i}\right]=p_{i}, q_{i}=1-p_{i}$ for each $i$, and let $p=\frac{1}{n} \sum_{i} p_{i}$ and $q=1-p$. Observation: on $[0,1], e^{\lambda x} \leq \alpha x+\beta$ for $\alpha=e^{\lambda}-1$ and $\beta=1$. So $\mathbf{E}\left[e^{\lambda X_{i}}\right] \leq \mathbf{E}\left[\left(e^{\lambda}-1\right) X_{i}+1\right]=p_{i} e^{\lambda}+q_{i}$. Therefore $\mathbf{E}\left[e^{\lambda X}\right]=\prod_{i} \mathbf{E}\left[e^{\lambda X_{i}}\right] \leq \prod_{i}\left(p_{i} e^{\lambda}+q_{i}\right) \leq\left(p e^{\lambda}+q\right)^{n}$.

## Chernoff Bound: The Hoeffding Extension

What if $X_{1}, \cdots, X_{n}$ always take values from [ 0,1 ] but not necessarily $\{0,1\}$ ? Suppose $\mathbf{E}\left[X_{i}\right]=p_{i}, q_{i}=1-p_{i}$ for each $i$, and let $p=\frac{1}{n} \sum_{i} p_{i}$ and $q=1-p$. Observation: on $[0,1], e^{\lambda x} \leq \alpha x+\beta$ for $\alpha=e^{\lambda}-1$ and $\beta=1$. So $\mathbf{E}\left[e^{\lambda X_{i}}\right] \leq \mathbf{E}\left[\left(e^{\lambda}-1\right) X_{i}+1\right]=p_{i} e^{\lambda}+q_{i}$. Therefore $\mathbf{E}\left[e^{\lambda X}\right]=\prod_{i} \mathbf{E}\left[e^{\lambda X_{i}}\right] \leq \prod_{i}\left(p_{i} e^{\lambda}+q_{i}\right) \leq\left(p e^{\lambda}+q\right)^{n}$. The rest of the proof remains the same.

## Chernoff Bound: The Hoeffding Extension

What if $X_{1}, \cdots, X_{n}$ always take values from [ 0,1 ] but not necessarily $\{0,1\}$ ? Suppose $\mathbf{E}\left[X_{i}\right]=p_{i}, q_{i}=1-p_{i}$ for each $i$, and let $p=\frac{1}{n} \sum_{i} p_{i}$ and $q=1-p$. Observation: on $[0,1], e^{\lambda x} \leq \alpha x+\beta$ for $\alpha=e^{\lambda}-1$ and $\beta=1$. So $\mathbf{E}\left[e^{\lambda X_{i}}\right] \leq \mathbf{E}\left[\left(e^{\lambda}-1\right) X_{i}+1\right]=p_{i} e^{\lambda}+q_{i}$.
Therefore $\mathbf{E}\left[e^{\lambda X}\right]=\prod_{i} \mathbf{E}\left[e^{\lambda X_{i}}\right] \leq \prod_{i}\left(p_{i} e^{\lambda}+q_{i}\right) \leq\left(p e^{\lambda}+q\right)^{n}$.
The rest of the proof remains the same.

## Theorem

For any $t>0$,

$$
\operatorname{Pr}[X>(p+t) n] \leq \exp \left\{\left(-(p+t) \ln \frac{p+t}{p}-(q-t) \ln \frac{q-t}{q}\right) n\right\} .
$$

## Useful Forms of Chernoff Bound

## Corollary

Let $X_{1}, \cdots, X_{n}$ be independently distributed on $[0,1]$ and $X=\sum_{i} X_{i}$.

- For all $t>0$,

$$
\operatorname{Pr}[X>\mathbf{E}[X]+t], \operatorname{Pr}[X<\mathbf{E}[X]-t] \leq e^{-2 t^{2} / n}
$$

- For any $\epsilon<1$,

$$
\begin{aligned}
& \operatorname{Pr}[X>(1+\epsilon) \mathbf{E}[X]] \leq\left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\mathbf{E}[X]} \leq \exp \left(-\frac{\epsilon^{2}}{3} \mathbf{E}[X]\right) ; \\
& \operatorname{Pr}[X<(1-\epsilon) \mathbf{E}[X]] \leq\left(\frac{e^{-\epsilon}}{(1-\epsilon)^{1-\epsilon}}\right)^{\mathbf{E}[X]} \leq \exp \left(-\frac{\epsilon^{2}}{2} \mathbf{E}[X]\right) .
\end{aligned}
$$

## Useful Forms of Chernoff Bound (Cont.)

## Corollary ((Cont.))

- For any $\epsilon>1$,

$$
\operatorname{Pr}[X>(1+\epsilon) \mathbf{E}[X]] \leq\left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\mathbf{E}[X]} \leq \exp \left(-\frac{\epsilon}{3} \mathbf{E}[X]\right)
$$

- If $t>2 e \mathbf{E}[X]$, then

$$
\operatorname{Pr}[X>t] \leq 2^{-t}
$$

## Proof Sketch

## Proof Sketch.

- Let $f(t)$ be $(p+t) \ln \frac{p+t}{p}+(q-t) \ln \frac{q-t}{q}$. Show $f(t) \geq 2 t^{2}$ by showing $f(0)=f^{\prime}(0)=0$ and $f^{\prime \prime}(t) \geq 4$ for all $0 \leq t \leq q$ followed by Taylor's theorem with remainder.


## Proof Sketch

## Proof Sketch.

- Let $f(t)$ be $(p+t) \ln \frac{p+t}{p}+(q-t) \ln \frac{q-t}{q}$. Show $f(t) \geq 2 t^{2}$ by showing $f(0)=f^{\prime}(0)=0$ and $f^{\prime \prime}(t) \geq 4$ for all $0 \leq t \leq q$ followed by Taylor's theorem with remainder.
- Let $g(x)$ be $f(p x)$, then $g^{\prime}(0)=p f^{\prime}(p x)$, and so $g(0)=g^{\prime}(0)=0$. Show $g^{\prime}(1)>p \ln 2>\frac{2}{3} p$. Deduce that for $x \in(0,1), g(x) \geq p x^{2} / 3$.


## Proof Sketch

## Proof Sketch.

- Let $f(t)$ be $(p+t) \ln \frac{p+t}{p}+(q-t) \ln \frac{q-t}{q}$. Show $f(t) \geq 2 t^{2}$ by showing $f(0)=f^{\prime}(0)=0$ and $f^{\prime \prime}(t) \geq 4$ for all $0 \leq t \leq q$ followed by Taylor's theorem with remainder.
- Let $g(x)$ be $f(p x)$, then $g^{\prime}(0)=p f^{\prime}(p x)$, and so $g(0)=g^{\prime}(0)=0$. Show $g^{\prime}(1)>p \ln 2>\frac{2}{3} p$. Deduce that for $x \in(0,1), g(x) \geq p x^{2} / 3$.
- Set $h(x):=g(-x)$. Then $h^{\prime}(x)=-g^{\prime}(-x)$, and $h(0)=h^{\prime}(0)=0$. Show then $h^{\prime \prime}(x) \leq p$ for $x \in(0,1)$. Deduce that $h(x) \geq p x^{2} / 2$.


## Proof Sketch

## Proof Sketch.

- Let $f(t)$ be $(p+t) \ln \frac{p+t}{p}+(q-t) \ln \frac{q-t}{q}$. Show $f(t) \geq 2 t^{2}$ by showing $f(0)=f^{\prime}(0)=0$ and $f^{\prime \prime}(t) \geq 4$ for all $0 \leq t \leq q$ followed by Taylor's theorem with remainder.
- Let $g(x)$ be $f(p x)$, then $g^{\prime}(0)=p f^{\prime}(p x)$, and so $g(0)=g^{\prime}(0)=0$. Show $g^{\prime}(1)>p \ln 2>\frac{2}{3} p$. Deduce that for $x \in(0,1), g(x) \geq p x^{2} / 3$.
- Set $h(x):=g(-x)$. Then $h^{\prime}(x)=-g^{\prime}(-x)$, and $h(0)=h^{\prime}(0)=0$. Show then $h^{\prime \prime}(x) \leq p$ for $x \in(0,1)$. Deduce that $h(x) \geq p x^{2} / 2$.
See assigned reading for more details. Or take them as exercises.

