Learning Goals

- State the implementation of the Quicksort algorithm
- Define Las Vegas and Monte Carlo algorithms
- Basic analysis of the running time of randomized algorithms
- Develop intuitive understanding of the balls and bins asymptotics

Setup and the algorithm

- Input: A set S of n integers a_{1}, \ldots, a_{n}.
- Output: Sorted array of the n integers in increasing order.

Setup and the algorithm

- Input: A set S of n integers a_{1}, \ldots, a_{n}.
- Output: Sorted array of the n integers in increasing order.
- Recall: Deterministic algorithms: Merge Sort (divide and conquor, running time $O(n \log n)$.

Setup and the algorithm

- Input: A set S of n integers a_{1}, \ldots, a_{n}.
- Output: Sorted array of the n integers in increasing order.
- Recall: Deterministic algorithms: Merge Sort (divide and conquor, running time $O(n \log n)$.
- Recall lower bound: no deterministic algorithm can make $o(n \log n)$ comparisons in the worst case.

Setup and the algorithm

- Input: A set S of n integers a_{1}, \ldots, a_{n}.
- Output: Sorted array of the n integers in increasing order.
- Recall: Deterministic algorithms: Merge Sort (divide and conquor, running time $O(n \log n)$.
- Recall lower bound: no deterministic algorithm can make $o(n \log n)$ comparisons in the worst case.
- One of the best known sorting algorithm - Quicksort(S): If $|S| \leq 3$, return sorted S. Otherwise, pick an element a_{i} uniformly at random from S, form two sets: $S^{+}:=\left\{a_{j}: a_{j}>a_{i}\right\}$ and $S^{-}:=\left\{a_{j}: a_{j}<a_{i}\right\}$. Return Quicksort $\left(S^{-}\right), a_{j}$, Quicksort $\left(S^{+}\right)$.

Categorization of Randomized Algorithms

- A randomized algorithm is simply an algorithm with access to random coins.

Categorization of Randomized Algorithms

- A randomized algorithm is simply an algorithm with access to random coins.
- Two categories of randomized algorithms:

Categorization of Randomized Algorithms

- A randomized algorithm is simply an algorithm with access to random coins.
- Two categories of randomized algorithms:
- A Las Vegas algorithm always terminates with a correct solution; its running time is a random variable.

Categorization of Randomized Algorithms

- A randomized algorithm is simply an algorithm with access to random coins.
- Two categories of randomized algorithms:
- A Las Vegas algorithm always terminates with a correct solution; its running time is a random variable.
- A Monte Carlo algorithm returns a correct solution only probabilistically; its running time may or may not be a random variable.

Categorization of Randomized Algorithms

- A randomized algorithm is simply an algorithm with access to random coins.
- Two categories of randomized algorithms:
- A Las Vegas algorithm always terminates with a correct solution; its running time is a random variable.
- A Monte Carlo algorithm returns a correct solution only probabilistically; its running time may or may not be a random variable.
- Later in the semester we will also encounter algorithms that give approximations, and we reason about the quality of the approximations in a probabilistic manner.

Analysis of Quicksort

Theorem

With high probability, the running time of Quicksort is $O(n \log n)$.

Analysis of Quicksort

Theorem

With high probability, the running time of Quicksort is $O(n \log n)$.

- Observation: In each recursion, forming S^{+}and S^{-}altogether takes $O(n)$ time.

Analysis of Quicksort

Theorem

With high probability, the running time of Quicksort is $O(n \log n)$.

- Observation: In each recursion, forming S^{+}and S^{-}altogether takes $O(n)$ time.
- Intuition: if a_{j} always roughly cuts S in the middle, then the running time is roughly $T(n) \approx 2 T(n / 2)+O(n) \Rightarrow T(n)=O(n \log n)$.

Analysis of Quicksort

- The procedure can be represented by a binary tree, where each node represents a pivoting, the two children being the two subsets resulting from comparisons with the pivoting element.

Analysis of Quicksort

- The procedure can be represented by a binary tree, where each node represents a pivoting, the two children being the two subsets resulting from comparisons with the pivoting element.
- The running time for each level in total is $O(n)$, so it suffices to show that, with high probability, the height of the tree is $O(\log n)$.

Analysis of Quicksort

- Follow a path from the root, specified by "left" or "right" at each step.

Analysis of Quicksort

- Follow a path from the root, specified by "left" or "right" at each step.
- We say each step is "good" if the size of the array at the child is at most $\frac{3}{4}$ that of the parent; otherwise we say the step is "bad".

Analysis of Quicksort

- Follow a path from the root, specified by "left" or "right" at each step.
- We say each step is "good" if the size of the array at the child is at most $\frac{3}{4}$ that of the parent; otherwise we say the step is "bad".
- There can be at most $\log _{4 / 3} n$ good steps before we are at a leaf.

Analysis of Quicksort

- Follow a path from the root, specified by "left" or "right" at each step.
- We say each step is "good" if the size of the array at the child is at most $\frac{3}{4}$ that of the parent; otherwise we say the step is "bad".
- There can be at most $\log _{4 / 3} n$ good steps before we are at a leaf.
- Let's bound the probability that, in $12 \log n$ steps, there are fewer than $\log _{\frac{4}{3}} n$ good steps.

Analysis of Quicksort

- Follow a path from the root, specified by "left" or "right" at each step.
- We say each step is "good" if the size of the array at the child is at most $\frac{3}{4}$ that of the parent; otherwise we say the step is "bad".
- There can be at most $\log _{4 / 3} n$ good steps before we are at a leaf.
- Let's bound the probability that, in $12 \log n$ steps, there are fewer than $\log _{\frac{4}{3}} n$ good steps.
- Let X_{i} be the indicator variable for the i-th step being good, then $\mathbf{E}\left[X_{i}\right] \geq \frac{1}{2}$, and the X_{i} 's are i.i.d.

Analysis of Quicksort

- Follow a path from the root, specified by "left" or "right" at each step.
- We say each step is "good" if the size of the array at the child is at most $\frac{3}{4}$ that of the parent; otherwise we say the step is "bad".
- There can be at most $\log _{4 / 3} n$ good steps before we are at a leaf.
- Let's bound the probability that, in $12 \log n$ steps, there are fewer than $\log _{\frac{4}{3}} n$ good steps.
- Let X_{i} be the indicator variable for the i-th step being good, then $\mathbf{E}\left[X_{i}\right] \geq \frac{1}{2}$, and the X_{i} 's are i.i.d.
- Let X be $\sum_{i=1}^{12 \log n} X_{i}$. By Chernoff bound, we have

$$
\begin{aligned}
\operatorname{Pr}\left[X<\frac{\log n}{\log \frac{4}{3}}\right] \leq \operatorname{Pr}[X<\mathbf{E}[X]-5 \log n] & \leq \exp \left(-2 \cdot \frac{25 \log ^{2} n}{12 \log n}\right) \\
& =n^{-25 / 6}
\end{aligned}
$$

Analysis of Quicksort (Cont.)

- There are n leaves.

Analysis of Quicksort (Cont.)

- There are n leaves.
- By the union bound, the probability that any leaf has depth more than $12 \log n$ is no more than $n \cdot n^{-25 / 6}=n^{-19 / 6}$.

Analysis of Quicksort (Cont.)

- There are n leaves.
- By the union bound, the probability that any leaf has depth more than $12 \log n$ is no more than $n \cdot n^{-25 / 6}=n^{-19 / 6}$.
- Therefore, with high probability, the height of the tree is bounded by $12 \log n$.

Analysis of Quicksort (Cont.)

- There are n leaves.
- By the union bound, the probability that any leaf has depth more than $12 \log n$ is no more than $n \cdot n^{-25 / 6}=n^{-19 / 6}$.
- Therefore, with high probability, the height of the tree is bounded by $12 \log n$.
- Obviously the constants in the analysis were not fine-tuned.

The Negative Binomial Distribution

- In the proof above, we wanted to bound the probability that we take more than $12 \log n$ steps to see $\log _{4 / 3} n$ good ones; instead, we bounded the probability that, within $12 \log n$ steps, there are fewer than $\log _{4 / 3} n$ good ones.

The Negative Binomial Distribution

- In the proof above, we wanted to bound the probability that we take more than $12 \log n$ steps to see $\log _{4 / 3} n$ good ones; instead, we bounded the probability that, within $12 \log n$ steps, there are fewer than $\log _{4 / 3} n$ good ones.
- Are these two probabilities equal?

The Negative Binomial Distribution

- In the proof above, we wanted to bound the probability that we take more than $12 \log n$ steps to see $\log _{4 / 3} n$ good ones; instead, we bounded the probability that, within $12 \log n$ steps, there are fewer than $\log _{4 / 3} n$ good ones.
- Are these two probabilities equal?
- Answer: Yes. A random variable counting the number of i.i.d. trials before seeing k successful ones is said to follow the negative binomial distribution.

The Negative Binomial Distribution

- In the proof above, we wanted to bound the probability that we take more than $12 \log n$ steps to see $\log _{4 / 3} n$ good ones; instead, we bounded the probability that, within $12 \log n$ steps, there are fewer than $\log _{4 / 3} n$ good ones.
- Are these two probabilities equal?
- Answer: Yes. A random variable counting the number of i.i.d. trials before seeing k successful ones is said to follow the negative binomial distribution.
- The probability that such a random variable is larger than n is equal to the probability that, within n i.i.d. trials we have not seen k successful ones.
- The statement may seem obvious, but a formal argument needs either "coupling" or some careful calculations.

Bins and Balls

- When discussing hashing, we considered a naïve family of hash: mapping elements of U uniformly random to an address.

Bins and Balls

- When discussing hashing, we considered a naïve family of hash: mapping elements of U uniformly random to an address.
- In our first lecture, we considered n tasks sending requests uniformly at random to one of the servers.

Bins and Balls

- When discussing hashing, we considered a naïve family of hash: mapping elements of U uniformly random to an address.
- In our first lecture, we considered n tasks sending requests uniformly at random to one of the servers.
- Such scenarios arise very often in algorithmic analysis.

Bins and Balls

- When discussing hashing, we considered a naïve family of hash: mapping elements of U uniformly random to an address.
- In our first lecture, we considered n tasks sending requests uniformly at random to one of the servers.
- Such scenarios arise very often in algorithmic analysis.
- This is often abstracted as a balls and bins model: we have n balls and m bins, and each ball is thrown uniformly at random to a bin.

Bins and Balls

- When discussing hashing, we considered a naïve family of hash: mapping elements of U uniformly random to an address.
- In our first lecture, we considered n tasks sending requests uniformly at random to one of the servers.
- Such scenarios arise very often in algorithmic analysis.
- This is often abstracted as a balls and bins model: we have n balls and m bins, and each ball is thrown uniformly at random to a bin.
- Any bin receives in expectation $\frac{n}{m}$ balls. If $m=n$, this is 1 .

Bins and Balls

- When discussing hashing, we considered a naïve family of hash: mapping elements of U uniformly random to an address.
- In our first lecture, we considered n tasks sending requests uniformly at random to one of the servers.
- Such scenarios arise very often in algorithmic analysis.
- This is often abstracted as a balls and bins model: we have n balls and m bins, and each ball is thrown uniformly at random to a bin.
- Any bin receives in expectation $\frac{n}{m}$ balls. If $m=n$, this is 1 .
- How about the bin that received the most balls? How many balls should we expect to see there?

Balls and Bins when $m=n$

- Let's consider a particular bin. Let X_{i} be the indicator variable for the event that the i-th ball falls in this bin.

Balls and Bins when $m=n$

- Let's consider a particular bin. Let X_{i} be the indicator variable for the event that the i-th ball falls in this bin.
- Then $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{n}$.

Balls and Bins when $m=n$

- Let's consider a particular bin. Let X_{i} be the indicator variable for the event that the i-th ball falls in this bin.
- Then $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{n}$.
- Let X be $\sum_{i} X_{i}$. Note that $\mathbf{E}[X]=1$.

Balls and Bins when $m=n$

- Let's consider a particular bin. Let X_{i} be the indicator variable for the event that the i-th ball falls in this bin.
- Then $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{n}$.
- Let X be $\sum_{i} X_{i}$. Note that $\mathbf{E}[X]=1$.
- For $t>0$, we use Chernoff bound

$$
\operatorname{Pr}[X>(1+t) \mathbf{E}[X]] \leq\left(\frac{e^{t}}{(1+t)^{1+t}}\right)^{\mathbf{E}[X]} \leq\left(\frac{e}{1+t}\right)^{1+t}
$$

Balls and Bins when $m=n$

- Let's consider a particular bin. Let X_{i} be the indicator variable for the event that the i-th ball falls in this bin.
- Then $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{n}$.
- Let X be $\sum_{i} X_{i}$. Note that $\mathbf{E}[X]=1$.
- For $t>0$, we use Chernoff bound

$$
\operatorname{Pr}[X>(1+t) \mathbf{E}[X]] \leq\left(\frac{e^{t}}{(1+t)^{1+t}}\right)^{\mathbf{E}[X]} \leq\left(\frac{e}{1+t}\right)^{1+t}
$$

- We would like to find t so that this probability is smaller than n^{-2}. Essentially we are asking what solves $x^{x}=n$.

Balls and Bins when $m=n$ (Cont.)

- To estimate the solution of $x^{x}=n$, we first take logarithm, $x \log x=\log n, \log x+\log \log x=\log \log n$.

Balls and Bins when $m=n$ (Cont.)

- To estimate the solution of $x^{x}=n$, we first take logarithm, $x \log x=\log n, \log x+\log \log x=\log \log n$.
- Note that $x<\log n$.

Balls and Bins when $m=n$ (Cont.)

- To estimate the solution of $x^{x}=n$, we first take logarithm, $x \log x=\log n, \log x+\log \log x=\log \log n$.
- Note that $x<\log n$.
- We have $2 \log x \geq \log x+\log \log x=\log \log n \geq \log x$, so

$$
\frac{1}{2} x \leq \frac{\log n}{\log \log n} \leq x \Rightarrow x=\Theta\left(\frac{\log n}{\log \log n}\right)
$$

Balls and Bins when $m=n$ (Cont.)

- To estimate the solution of $x^{x}=n$, we first take logarithm, $x \log x=\log n, \log x+\log \log x=\log \log n$.
- Note that $x<\log n$.
- We have $2 \log x \geq \log x+\log \log x=\log \log n \geq \log x$, so

$$
\frac{1}{2} x \leq \frac{\log n}{\log \log n} \leq x \Rightarrow x=\Theta\left(\frac{\log n}{\log \log n}\right)
$$

- Let the solution to $x^{x}=n$ be $\gamma(n)$, and let $1+t=e \gamma(n)$, we have

$$
\left(\frac{e}{1+t}\right)^{1+t}=\left(\frac{1}{\gamma(n)}\right)^{e \gamma(n)}=n^{-e}<n^{-2}
$$

Balls and Bins when $m=n$ (Cont.)

- To estimate the solution of $x^{x}=n$, we first take logarithm, $x \log x=\log n, \log x+\log \log x=\log \log n$.
- Note that $x<\log n$.
- We have $2 \log x \geq \log x+\log \log x=\log \log n \geq \log x$, so

$$
\frac{1}{2} x \leq \frac{\log n}{\log \log n} \leq x \Rightarrow x=\Theta\left(\frac{\log n}{\log \log n}\right) .
$$

- Let the solution to $x^{x}=n$ be $\gamma(n)$, and let $1+t=e \gamma(n)$, we have

$$
\left(\frac{e}{1+t}\right)^{1+t}=\left(\frac{1}{\gamma(n)}\right)^{e \gamma(n)}=n^{-e}<n^{-2}
$$

- By union bound, with probability at least $1-\frac{1}{n}$, no bin receives more than $e \gamma(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ balls.

Balls and Bins When $n \gg m$

- As n grows, the number of balls concentrates more sharply around its means.

Balls and Bins When $n \gg m$

- As n grows, the number of balls concentrates more sharply around its means.
- E.g., take $n=16 m \log m$, with the previous notation, $\mathbf{E}[X]=16 \log m$.

Balls and Bins When $n \gg m$

- As n grows, the number of balls concentrates more sharply around its means.
- E.g., take $n=16 m \log m$, with the previous notation, $\mathbf{E}[X]=16 \log m$.

$$
\begin{aligned}
\operatorname{Pr}[X \geq 32 \log m] & =\operatorname{Pr}[X \geq 2 \mathbf{E}[X]] \leq e^{-\mathbf{E}[X] / 3}=m^{-16 / 3}<\frac{1}{m^{2}} \\
\operatorname{Pr}[X \leq 8 \log m] & =\operatorname{Pr}\left[X \leq \frac{1}{2} \mathbf{E}[X]\right] \leq e^{-\mathbf{E}[X] / 8}=\frac{1}{m^{2}}
\end{aligned}
$$

Balls and Bins When $n \gg m$

- As n grows, the number of balls concentrates more sharply around its means.
- E.g., take $n=16 m \log m$, with the previous notation, $\mathbf{E}[X]=16 \log m$.

$$
\begin{aligned}
\operatorname{Pr}[X \geq 32 \log m] & =\operatorname{Pr}[X \geq 2 \mathbf{E}[X]] \leq e^{-\mathbf{E}[X] / 3}=m^{-16 / 3}<\frac{1}{m^{2}} \\
\operatorname{Pr}[X \leq 8 \log m] & =\operatorname{Pr}\left[X \leq \frac{1}{2} \mathbf{E}[X]\right] \leq e^{-\mathbf{E}[X] / 8}=\frac{1}{m^{2}} .
\end{aligned}
$$

Theorem

For $n=\Omega(m \log m)$, with high probability, the number of balls every bin receives is between half and twice the average.

