Applications of Chernoff Bound

Learning Goals

State the implementation of the Quicksort algorithm

Define Las Vegas and Monte Carlo algorithms

Basic analysis of the running time of randomized algorithms

Develop intuitive understanding of the balls and bins asymptotics



Setup and the algorithm

o Input: A set S of nintegers ay, ..., a,.

@ Output: Sorted array of the n integers in increasing order.
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Setup and the algorithm

o Input: A set S of nintegers ay, ..., a,.

@ Output: Sorted array of the n integers in increasing order.

@ Recall: Deterministic algorithms: Merge Sort (divide and conquor,
running time O(nlog n).

o Recall lower bound: no deterministic algorithm can make o(nlog n)
comparisons in the worst case.

@ One of the best known sorting algorithm — Quicksort(S): If |S| < 3,
return sorted S. Otherwise, pick an element a; uniformly at random
from S, form two sets: ST = {a;: ¢; > a;} and S~ = {q; : @; < a;}.
Return Quicksort(S™), a;, Quicksort(S™).
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Applications of Chernoff Bound

Categorization of Randomized Algorithms

@ A randomized algorithm is simply an algorithm with access to random
coins.

@ Two categories of randomized algorithms:

o A Las Vegas algorithm always terminates with a correct solution; its
running time is a random variable.

e A Monte Carlo algorithm returns a correct solution only probabilistically;
its running time may or may not be a random variable.

o Later in the semester we will also encounter algorithms that give
approximations, and we reason about the quality of the approximations
in a probabilistic manner.
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Applications of Chernoff Bound

Analysis of Quicksort

With high probability, the running time of Quicksort is O(nlog n).

@ Observation: In each recursion, forming ST and S altogether takes
O(n) time.

e Intuition: if a; always roughly cuts S in the middle, then the running
time is roughly T(n) ~ 2T(n/2) 4+ O(n) = T(n) = O(nlog n).
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Analysis of Quicksort

@ The procedure can be represented by a binary tree, where each node
represents a pivoting, the two children being the two subsets resulting
from comparisons with the pivoting element.

@ The running time for each level in total is O(n), so it suffices to show
that, with high probability, the height of the tree is O(log n).
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Analysis of Quicksort

@ Follow a path from the root, specified by “left” or “right” at each step.

e We say each step is “good” if the size of the array at the child is at
most % that of the parent; otherwise we say the step is “bad”.

o There can be at most log, 3 n good steps before we are at a leaf.

@ Let’s bound the probability that, in 12 log n steps, there are fewer than
logs n good steps.
3
o Let X; be the indicator variable for the i-th step being good, then
E[X] > 3, and the X’s are i.i.d.

o Let X be Z}-ilfg" X;. By Chernoff bound, we have

|
Pr [x < Iog"

25log? n
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Analysis of Quicksort (Cont.)

@ There are n leaves.

@ By the union bound, the probability that any leaf has depth more than
12 log n is no more than n- n=2/6 = p=19/6,

@ Therefore, with high probability, the height of the tree is bounded by
12 log n.

@ Obviously the constants in the analysis were not fine-tuned.
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The Negative Binomial Distribution

@ In the proof above, we wanted to bound the probability that we take
more than 12log n steps to see log, /3 n good ones; instead, we bounded
the probability that, within 12log n steps, there are fewer than log, 5 n
good ones.

@ Are these two probabilities equal?

@ Answer: Yes. A random variable counting the number of i.i.d. trials
before seeing k successful ones is said to follow the negative binomial
distribution.

@ The probability that such a random variable is larger than n is equal to
the probability that, within ni.i.d. trials we have not seen k successful
ones.

o The statement may seem obvious, but a formal argument needs either
“coupling” or some careful calculations.



Applications of Chernoff Bound

Bins and Balls

@ When discussing hashing, we considered a naive family of hash:
mapping elements of U uniformly random to an address.



Applications of Chernoff Bound

Bins and Balls

@ When discussing hashing, we considered a naive family of hash:
mapping elements of U uniformly random to an address.

@ In our first lecture, we considered n tasks sending requests uniformly
at random to one of the servers.

October 3, 2022 9/12



Applications of Chernoff Bound

Bins and Balls

@ When discussing hashing, we considered a naive family of hash:
mapping elements of U uniformly random to an address.

@ In our first lecture, we considered n tasks sending requests uniformly
at random to one of the servers.

@ Such scenarios arise very often in algorithmic analysis.

9/12



Applications of Chernoff Bound

Bins and Balls

@ When discussing hashing, we considered a naive family of hash:
mapping elements of U uniformly random to an address.

@ In our first lecture, we considered n tasks sending requests uniformly
at random to one of the servers.

@ Such scenarios arise very often in algorithmic analysis.

@ This is often abstracted as a balls and bins model: we have n balls and
m bins, and each ball is thrown uniformly at random to a bin.



Applications of Chernoff Bound

Bins and Balls

@ When discussing hashing, we considered a naive family of hash:
mapping elements of U uniformly random to an address.

In our first lecture, we considered n tasks sending requests uniformly
at random to one of the servers.

Such scenarios arise very often in algorithmic analysis.

This is often abstracted as a balls and bins model: we have n balls and
m bins, and each ball is thrown uniformly at random to a bin.

@ Any bin receives in expectation - balls. If m = n, this is 1.



Applications of Chernoff Bound

Bins and Balls

@ When discussing hashing, we considered a naive family of hash:
mapping elements of U uniformly random to an address.

@ In our first lecture, we considered n tasks sending requests uniformly
at random to one of the servers.

@ Such scenarios arise very often in algorithmic analysis.

@ This is often abstracted as a balls and bins model: we have n balls and
m bins, and each ball is thrown uniformly at random to a bin.

@ Any bin receives in expectation - balls. If m = n, this is 1.

@ How about the bin that received the most balls? How many balls
should we expect to see there?
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Balls and Bins when m = n

Let’s consider a particular bin. Let X; be the indicator variable for the
event that the i-th ball falls in this bin.

Then Pr[X; = 1] = %
Let X be >, X;. Note that E[X] = 1.
For t > 0, we use Chernoff bound

PriX > (1+)E[X]] < (%)Em < ( ¢ )Ht.

(1+1¢ 1+t

@ We would like to find t so that this probability is smaller than n™2.
Essentially we are asking what solves x* = n.
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Balls and Bins when m = n (Cont.)

@ To estimate the solution of x* = n, we first take logarithm,
x log x = log n, log x + log log x = log log n.

o Note that x < log n.

@ We have 2log x > log x + log log x = log log n > log x, so

Te<c togn o e )
2 log log n log log n

o Let the solution to x* = nbe y(n), and let 1+ t = ey(n), we have

e 1+t 1 ev(n) - 5
(5 ~Gw) e

@ By union bound, with probability at least 1 — %, no bin receives more

than ey(n) = @(log’ign) balls.
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Balls and Bins When n > m

@ As n grows, the number of balls concentrates more sharply around its
means.

e E.g., take n = 16mlog m, with the previous notation, E[X] = 16 log m.

1

Pr[X > 32logm] = Pr[X > 2E[X]] < e W2 = m10/3 < —;
m

1 —E[X 1
Pr[X < 8log m] = Pr [ngE[X]} <e H/SZE,

For n = Q(mlog m), with high probability, the number of balls every bin
receives is between half and twice the average.
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