
Applications of Cherno� Bound

Learning Goals

State the implementation of the �icksort algorithm

Define Las Vegas and Monte Carlo algorithms

Basic analysis of the running time of randomized algorithms

Develop intuitive understanding of the balls and bins asymptotics

October 3, 2022 1 / 12



Applications of Cherno� Bound

Setup and the algorithm

Input: A set S of n integers a1, . . . , an.

Output: Sorted array of the n integers in increasing order.

Recall: Deterministic algorithms: Merge Sort (divide and conquor,
running time O(n log n).

Recall lower bound: no deterministic algorithm can make o(n log n)
comparisons in the worst case.

One of the best known sorting algorithm — �icksort(S): If |S| ≤ 3,
return sorted S. Otherwise, pick an element ai uniformly at random
from S, form two sets: S+ := {aj : aj > ai} and S− := {aj : aj < ai}.
Return �icksort(S−), aj , �icksort(S+).
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Applications of Cherno� Bound

Categorization of Randomized Algorithms

A randomized algorithm is simply an algorithm with access to random
coins.

Two categories of randomized algorithms:
A Las Vegas algorithm always terminates with a correct solution; its
running time is a random variable.
A Monte Carlo algorithm returns a correct solution only probabilistically;
its running time may or may not be a random variable.

Later in the semester we will also encounter algorithms that give
approximations, and we reason about the quality of the approximations
in a probabilistic manner.
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Applications of Cherno� Bound

Analysis of �icksort

Theorem

With high probability, the running time of �icksort is O(n log n).

Observation: In each recursion, forming S+ and S− altogether takes
O(n) time.

Intuition: if aj always roughly cuts S in the middle, then the running
time is roughly T (n) ≈ 2T (n/2) + O(n)⇒ T (n) = O(n log n).
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Applications of Cherno� Bound

Analysis of �icksort

The procedure can be represented by a binary tree, where each node
represents a pivoting, the two children being the two subsets resulting
from comparisons with the pivoting element.

The running time for each level in total is O(n), so it su�ices to show
that, with high probability, the height of the tree is O(log n).
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Applications of Cherno� Bound

Analysis of �icksort

Follow a path from the root, specified by “le�” or “right” at each step.

We say each step is “good” if the size of the array at the child is at
most 3

4 that of the parent; otherwise we say the step is “bad”.

There can be at most log4/3 n good steps before we are at a leaf.

Let’s bound the probability that, in 12 log n steps, there are fewer than
log 4

3
n good steps.

Let Xi be the indicator variable for the i-th step being good, then
E[Xi] ≥ 1

2 , and the Xi’s are i.i.d.

Let X be
∑12 log n

i=1 Xi . By Cherno� bound, we have

Pr
[

X <
log n
log 4

3

]
≤ Pr [X < E [X ]− 5 log n] ≤ exp

(
−2 · 25 log2 n

12 log n

)
= n−25/6.
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Applications of Cherno� Bound

Analysis of �icksort (Cont.)

There are n leaves.

By the union bound, the probability that any leaf has depth more than
12 log n is no more than n · n−25/6 = n−19/6.

Therefore, with high probability, the height of the tree is bounded by
12 log n.

Obviously the constants in the analysis were not fine-tuned.

October 3, 2022 7 / 12



Applications of Cherno� Bound

Analysis of �icksort (Cont.)

There are n leaves.

By the union bound, the probability that any leaf has depth more than
12 log n is no more than n · n−25/6 = n−19/6.

Therefore, with high probability, the height of the tree is bounded by
12 log n.

Obviously the constants in the analysis were not fine-tuned.

October 3, 2022 7 / 12



Applications of Cherno� Bound

Analysis of �icksort (Cont.)

There are n leaves.

By the union bound, the probability that any leaf has depth more than
12 log n is no more than n · n−25/6 = n−19/6.

Therefore, with high probability, the height of the tree is bounded by
12 log n.

Obviously the constants in the analysis were not fine-tuned.

October 3, 2022 7 / 12



Applications of Cherno� Bound

Analysis of �icksort (Cont.)

There are n leaves.

By the union bound, the probability that any leaf has depth more than
12 log n is no more than n · n−25/6 = n−19/6.

Therefore, with high probability, the height of the tree is bounded by
12 log n.

Obviously the constants in the analysis were not fine-tuned.

October 3, 2022 7 / 12



Applications of Cherno� Bound

The Negative Binomial Distribution

In the proof above, we wanted to bound the probability that we take
more than 12 log n steps to see log4/3 n good ones; instead, we bounded
the probability that, within 12 log n steps, there are fewer than log4/3 n
good ones.

Are these two probabilities equal?

Answer: Yes. A random variable counting the number of i.i.d. trials
before seeing k successful ones is said to follow the negative binomial
distribution.
The probability that such a random variable is larger than n is equal to
the probability that, within n i.i.d. trials we have not seen k successful
ones.

The statement may seem obvious, but a formal argument needs either
“coupling” or some careful calculations.
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Applications of Cherno� Bound

Bins and Balls

When discussing hashing, we considered a naïve family of hash:
mapping elements of U uniformly random to an address.

In our first lecture, we considered n tasks sending requests uniformly
at random to one of the servers.

Such scenarios arise very o�en in algorithmic analysis.

This is o�en abstracted as a balls and bins model: we have n balls and
m bins, and each ball is thrown uniformly at random to a bin.

Any bin receives in expectation n
m balls. If m = n, this is 1.

How about the bin that received the most balls? How many balls
should we expect to see there?
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Applications of Cherno� Bound

Balls and Bins when m = n

Let’s consider a particular bin. Let Xi be the indicator variable for the
event that the i-th ball falls in this bin.

Then Pr[Xi = 1] = 1
n .

Let X be
∑

i Xi . Note that E[X ] = 1.

For t > 0, we use Cherno� bound

Pr [X > (1 + t)E [X ]] ≤
(

et

(1 + t)1+t

)E[X ]

≤
(

e
1 + t

)1+t

.

We would like to find t so that this probability is smaller than n−2.
Essentially we are asking what solves xx = n.

October 3, 2022 10 / 12



Applications of Cherno� Bound

Balls and Bins when m = n

Let’s consider a particular bin. Let Xi be the indicator variable for the
event that the i-th ball falls in this bin.

Then Pr[Xi = 1] = 1
n .

Let X be
∑

i Xi . Note that E[X ] = 1.

For t > 0, we use Cherno� bound

Pr [X > (1 + t)E [X ]] ≤
(

et

(1 + t)1+t

)E[X ]

≤
(

e
1 + t

)1+t

.

We would like to find t so that this probability is smaller than n−2.
Essentially we are asking what solves xx = n.

October 3, 2022 10 / 12



Applications of Cherno� Bound

Balls and Bins when m = n

Let’s consider a particular bin. Let Xi be the indicator variable for the
event that the i-th ball falls in this bin.

Then Pr[Xi = 1] = 1
n .

Let X be
∑

i Xi . Note that E[X ] = 1.

For t > 0, we use Cherno� bound

Pr [X > (1 + t)E [X ]] ≤
(

et

(1 + t)1+t

)E[X ]

≤
(

e
1 + t

)1+t

.

We would like to find t so that this probability is smaller than n−2.
Essentially we are asking what solves xx = n.

October 3, 2022 10 / 12



Applications of Cherno� Bound

Balls and Bins when m = n

Let’s consider a particular bin. Let Xi be the indicator variable for the
event that the i-th ball falls in this bin.

Then Pr[Xi = 1] = 1
n .

Let X be
∑

i Xi . Note that E[X ] = 1.

For t > 0, we use Cherno� bound

Pr [X > (1 + t)E [X ]] ≤
(

et

(1 + t)1+t

)E[X ]

≤
(

e
1 + t

)1+t

.

We would like to find t so that this probability is smaller than n−2.
Essentially we are asking what solves xx = n.

October 3, 2022 10 / 12



Applications of Cherno� Bound

Balls and Bins when m = n

Let’s consider a particular bin. Let Xi be the indicator variable for the
event that the i-th ball falls in this bin.

Then Pr[Xi = 1] = 1
n .

Let X be
∑

i Xi . Note that E[X ] = 1.

For t > 0, we use Cherno� bound

Pr [X > (1 + t)E [X ]] ≤
(

et

(1 + t)1+t

)E[X ]

≤
(

e
1 + t

)1+t

.

We would like to find t so that this probability is smaller than n−2.
Essentially we are asking what solves xx = n.

October 3, 2022 10 / 12



Applications of Cherno� Bound

Balls and Bins when m = n (Cont.)

To estimate the solution of xx = n, we first take logarithm,
x log x = log n, log x + log log x = log log n.

Note that x < log n.
We have 2 log x ≥ log x + log log x = log log n ≥ log x , so

1
2

x ≤ log n
log log n

≤ x ⇒ x = Θ

(
log n

log log n

)
.

Let the solution to xx = n be γ(n), and let 1 + t = eγ(n), we have(
e

1 + t

)1+t

=

(
1

γ(n)

)eγ(n)

= n−e < n−2.

By union bound, with probability at least 1− 1
n , no bin receives more

than eγ(n) = Θ( log n
log log n ) balls.
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x log x = log n, log x + log log x = log log n.
Note that x < log n.
We have 2 log x ≥ log x + log log x = log log n ≥ log x , so

1
2

x ≤ log n
log log n

≤ x ⇒ x = Θ

(
log n

log log n

)
.

Let the solution to xx = n be γ(n), and let 1 + t = eγ(n), we have(
e

1 + t

)1+t

=

(
1

γ(n)

)eγ(n)
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Applications of Cherno� Bound

Balls and Bins When n� m

As n grows, the number of balls concentrates more sharply around its
means.

E.g., take n = 16m log m, with the previous notation, E[X ] = 16 log m.

Pr [X ≥ 32 log m] = Pr [X ≥ 2E [X ]] ≤ e−E[X ]/3 = m−16/3 <
1

m2 ;

Pr [X ≤ 8 log m] = Pr
[

X ≤ 1
2
E [X ]

]
≤ e−E[X ]/8 =

1
m2 .

Theorem

For n = Ω(m log m), with high probability, the number of balls every bin
receives is between half and twice the average.
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