
Binary Search Trees

Learning Goals

Define a binary search tree

Implement Insertion and Deletion on a binary search tree

Implement tree rotations

Understand the meaning and consequence of balancedness of a BST

November 4, 2022 1 / 16



Binary Search Trees

Tree: Definition

A tree is a data structure that either is empty or consists a root node,

with pointers linked to subtrees.

If a subtree is not empty, its root is a child of the parent, the node

pointing to it from the larger tree.

Very o�en each node in a tree maintains a pointer linked to its parent.

For the root, this pointer points to Nil.

A node whose children are all Nil is called a leaf.

A tree is binary if every node of it has at most 2 children.

For a binary tree, a node’s two children are referred to as its Left child

and its right child.

November 4, 2022 2 / 16



Binary Search Trees

Tree: Definition

A tree is a data structure that either is empty or consists a root node,

with pointers linked to subtrees.

If a subtree is not empty, its root is a child of the parent, the node

pointing to it from the larger tree.

Very o�en each node in a tree maintains a pointer linked to its parent.

For the root, this pointer points to Nil.

A node whose children are all Nil is called a leaf.

A tree is binary if every node of it has at most 2 children.

For a binary tree, a node’s two children are referred to as its Left child

and its right child.

November 4, 2022 2 / 16



Binary Search Trees

Tree: Definition

A tree is a data structure that either is empty or consists a root node,

with pointers linked to subtrees.

If a subtree is not empty, its root is a child of the parent, the node

pointing to it from the larger tree.

Very o�en each node in a tree maintains a pointer linked to its parent.

For the root, this pointer points to Nil.

A node whose children are all Nil is called a leaf.

A tree is binary if every node of it has at most 2 children.

For a binary tree, a node’s two children are referred to as its Left child

and its right child.

November 4, 2022 2 / 16



Binary Search Trees

Tree: Definition

A tree is a data structure that either is empty or consists a root node,

with pointers linked to subtrees.

If a subtree is not empty, its root is a child of the parent, the node

pointing to it from the larger tree.

Very o�en each node in a tree maintains a pointer linked to its parent.

For the root, this pointer points to Nil.

A node whose children are all Nil is called a leaf.

A tree is binary if every node of it has at most 2 children.

For a binary tree, a node’s two children are referred to as its Left child

and its right child.

November 4, 2022 2 / 16



Binary Search Trees

Tree: Definition

A tree is a data structure that either is empty or consists a root node,

with pointers linked to subtrees.

If a subtree is not empty, its root is a child of the parent, the node

pointing to it from the larger tree.

Very o�en each node in a tree maintains a pointer linked to its parent.

For the root, this pointer points to Nil.

A node whose children are all Nil is called a leaf.

A tree is binary if every node of it has at most 2 children.

For a binary tree, a node’s two children are referred to as its Left child

and its right child.

November 4, 2022 2 / 16



Binary Search Trees

Tree: Definition

A tree is a data structure that either is empty or consists a root node,

with pointers linked to subtrees.

If a subtree is not empty, its root is a child of the parent, the node

pointing to it from the larger tree.

Very o�en each node in a tree maintains a pointer linked to its parent.

For the root, this pointer points to Nil.

A node whose children are all Nil is called a leaf.

A tree is binary if every node of it has at most 2 children.

For a binary tree, a node’s two children are referred to as its Left child

and its right child.

November 4, 2022 2 / 16



Binary Search Trees

Illustration: A Binary Tree

November 4, 2022 3 / 16



Binary Search Trees

Binary Search Trees

As a data structure, a tree stores data in its nodes, so a node has its key

value and satellite content.

Some trees may not store satellite content in some of their nodes, e.g. a

B+ tree. In this course we do not consider such trees.

A binary tree is a binary search tree if for every node in it, its key value

is larger than (or equal to) all those in its le� subtree, and smaller than

(or equal to) all those in its right subtree.

November 4, 2022 4 / 16



Binary Search Trees

Binary Search Trees

As a data structure, a tree stores data in its nodes, so a node has its key

value and satellite content.

Some trees may not store satellite content in some of their nodes, e.g. a

B+ tree. In this course we do not consider such trees.

A binary tree is a binary search tree if for every node in it, its key value

is larger than (or equal to) all those in its le� subtree, and smaller than

(or equal to) all those in its right subtree.

November 4, 2022 4 / 16



Binary Search Trees

Binary Search Trees

As a data structure, a tree stores data in its nodes, so a node has its key

value and satellite content.

Some trees may not store satellite content in some of their nodes, e.g. a

B+ tree. In this course we do not consider such trees.

A binary tree is a binary search tree if for every node in it, its key value

is larger than (or equal to) all those in its le� subtree, and smaller than

(or equal to) all those in its right subtree.

November 4, 2022 4 / 16



Binary Search Trees

A Binary Search Tree

8

5

3

12

9

10

15

November 4, 2022 5 / 16



Binary Search Trees

Find on a BST

The height of a node is the number of nodes in the longest path from it

to a leaf. The height of a tree is the height of its root.

The depth of a node is the number of nodes in the longest path from it to

the root.

Let r be the root of a tree and h(r) its height.

Find(r, i) takes O(h(r)) time.

How good is this?

In the worst case, the tree can be a linked list, so this is linear time.

In the best case, a tree with n nodes has height O(log n).

A tree with height h can have 2
h − 1 nodes.

We’ll study algorithms that maintain search trees in good shape.

November 4, 2022 6 / 16



Binary Search Trees

Find on a BST

The height of a node is the number of nodes in the longest path from it

to a leaf. The height of a tree is the height of its root.

The depth of a node is the number of nodes in the longest path from it to

the root.

Let r be the root of a tree and h(r) its height.

Find(r, i) takes O(h(r)) time.

How good is this?

In the worst case, the tree can be a linked list, so this is linear time.

In the best case, a tree with n nodes has height O(log n).

A tree with height h can have 2
h − 1 nodes.

We’ll study algorithms that maintain search trees in good shape.

November 4, 2022 6 / 16



Binary Search Trees

Find on a BST

The height of a node is the number of nodes in the longest path from it

to a leaf. The height of a tree is the height of its root.

The depth of a node is the number of nodes in the longest path from it to

the root.

Let r be the root of a tree and h(r) its height.

Find(r, i) takes O(h(r)) time.

How good is this?

In the worst case, the tree can be a linked list, so this is linear time.

In the best case, a tree with n nodes has height O(log n).

A tree with height h can have 2
h − 1 nodes.

We’ll study algorithms that maintain search trees in good shape.

November 4, 2022 6 / 16



Binary Search Trees

Find on a BST

The height of a node is the number of nodes in the longest path from it

to a leaf. The height of a tree is the height of its root.

The depth of a node is the number of nodes in the longest path from it to

the root.

Let r be the root of a tree and h(r) its height.

Find(r, i) takes O(h(r)) time.

How good is this?

In the worst case, the tree can be a linked list, so this is linear time.

In the best case, a tree with n nodes has height O(log n).

A tree with height h can have 2
h − 1 nodes.

We’ll study algorithms that maintain search trees in good shape.

November 4, 2022 6 / 16



Binary Search Trees

Find on a BST

The height of a node is the number of nodes in the longest path from it

to a leaf. The height of a tree is the height of its root.

The depth of a node is the number of nodes in the longest path from it to

the root.

Let r be the root of a tree and h(r) its height.

Find(r, i) takes O(h(r)) time.

How good is this?

In the worst case, the tree can be a linked list, so this is linear time.

In the best case, a tree with n nodes has height O(log n).

A tree with height h can have 2
h − 1 nodes.

We’ll study algorithms that maintain search trees in good shape.

November 4, 2022 6 / 16



Binary Search Trees

Find on a BST

The height of a node is the number of nodes in the longest path from it

to a leaf. The height of a tree is the height of its root.

The depth of a node is the number of nodes in the longest path from it to

the root.

Let r be the root of a tree and h(r) its height.

Find(r, i) takes O(h(r)) time.

How good is this?

In the worst case, the tree can be a linked list, so this is linear time.

In the best case, a tree with n nodes has height O(log n).

A tree with height h can have 2
h − 1 nodes.

We’ll study algorithms that maintain search trees in good shape.

November 4, 2022 6 / 16



Binary Search Trees

Find on a BST

The height of a node is the number of nodes in the longest path from it

to a leaf. The height of a tree is the height of its root.

The depth of a node is the number of nodes in the longest path from it to

the root.

Let r be the root of a tree and h(r) its height.

Find(r, i) takes O(h(r)) time.

How good is this?

In the worst case, the tree can be a linked list, so this is linear time.

In the best case, a tree with n nodes has height O(log n).

A tree with height h can have 2
h − 1 nodes.

We’ll study algorithms that maintain search trees in good shape.

November 4, 2022 6 / 16



Binary Search Trees

Find on a BST

The height of a node is the number of nodes in the longest path from it

to a leaf. The height of a tree is the height of its root.

The depth of a node is the number of nodes in the longest path from it to

the root.

Let r be the root of a tree and h(r) its height.

Find(r, i) takes O(h(r)) time.

How good is this?

In the worst case, the tree can be a linked list, so this is linear time.

In the best case, a tree with n nodes has height O(log n).

A tree with height h can have 2
h − 1 nodes.

We’ll study algorithms that maintain search trees in good shape.

November 4, 2022 6 / 16



Binary Search Trees

Traversal of a BST

Given a BST with n nodes, we can output in O(n) time its entries in

increasing/decreasing key values.

The recursive algorithm is called an inorder tree walk: it outputs the

root in between the le� and the right subtrees.

Pseudocode:

Inorder-Tree-Walk(r);

if x 6= Nil then
Inorder-Tree-Walk(le�(r));
print key(x);
Inorder-Tree-Walk(right(r))

end

November 4, 2022 7 / 16



Binary Search Trees

Traversal of a BST

Given a BST with n nodes, we can output in O(n) time its entries in

increasing/decreasing key values.

The recursive algorithm is called an inorder tree walk: it outputs the

root in between the le� and the right subtrees.

Pseudocode:

Inorder-Tree-Walk(r);

if x 6= Nil then
Inorder-Tree-Walk(le�(r));
print key(x);
Inorder-Tree-Walk(right(r))

end

November 4, 2022 7 / 16



Binary Search Trees

Traversal of a BST

Given a BST with n nodes, we can output in O(n) time its entries in

increasing/decreasing key values.

The recursive algorithm is called an inorder tree walk: it outputs the

root in between the le� and the right subtrees.

Pseudocode:

Inorder-Tree-Walk(r);

if x 6= Nil then
Inorder-Tree-Walk(le�(r));
print key(x);
Inorder-Tree-Walk(right(r))

end

November 4, 2022 7 / 16



Binary Search Trees

Min and Max

Min(r): Given the root r of a BST, return the node with the smallest

key value in the tree

Return the le�most node in the tree

Min(r);

if le�(r) = Nil then
return r

else
returnMin(le�(r))

end

Max(r): Given the root r of a BST, return the node with the largest key

value in the tree

Both operations take O(h(r)) time.

November 4, 2022 8 / 16



Binary Search Trees

Min and Max

Min(r): Given the root r of a BST, return the node with the smallest

key value in the tree

Return the le�most node in the tree

Min(r);

if le�(r) = Nil then
return r

else
returnMin(le�(r))

end

Max(r): Given the root r of a BST, return the node with the largest key

value in the tree

Both operations take O(h(r)) time.

November 4, 2022 8 / 16



Binary Search Trees

Min and Max

Min(r): Given the root r of a BST, return the node with the smallest

key value in the tree

Return the le�most node in the tree

Min(r);

if le�(r) = Nil then
return r

else
returnMin(le�(r))

end

Max(r): Given the root r of a BST, return the node with the largest key

value in the tree

Both operations take O(h(r)) time.

November 4, 2022 8 / 16



Binary Search Trees

Min and Max

Min(r): Given the root r of a BST, return the node with the smallest

key value in the tree

Return the le�most node in the tree

Min(r);

if le�(r) = Nil then
return r

else
returnMin(le�(r))

end

Max(r): Given the root r of a BST, return the node with the largest key

value in the tree

Both operations take O(h(r)) time.

November 4, 2022 8 / 16



Binary Search Trees

Successor and Predecessor

Successor(x): Given a node x in a BST, we would like to return the

node containing the next larger key value

If x has a right child, the successor should be the minimum value in the

right subtree.

Otherwise, we should go up the tree until we find a node that is a le�

child, and we return the parent.

Successor(x);

if right(x) 6= Nil then returnMin(right(x)) ;

while parent(x) 6= Nil do
y ← parent(x);
if x = le�(y) then return y ;

x ← y ;

end
return Nil

Predessor(x): Symmetric to Successor.

November 4, 2022 9 / 16



Binary Search Trees

Successor and Predecessor

Successor(x): Given a node x in a BST, we would like to return the

node containing the next larger key value

If x has a right child, the successor should be the minimum value in the

right subtree.

Otherwise, we should go up the tree until we find a node that is a le�

child, and we return the parent.

Successor(x);

if right(x) 6= Nil then returnMin(right(x)) ;

while parent(x) 6= Nil do
y ← parent(x);
if x = le�(y) then return y ;

x ← y ;

end
return Nil

Predessor(x): Symmetric to Successor.

November 4, 2022 9 / 16



Binary Search Trees

Successor and Predecessor

Successor(x): Given a node x in a BST, we would like to return the

node containing the next larger key value

If x has a right child, the successor should be the minimum value in the

right subtree.

Otherwise, we should go up the tree until we find a node that is a le�

child, and we return the parent.

Successor(x);

if right(x) 6= Nil then returnMin(right(x)) ;

while parent(x) 6= Nil do
y ← parent(x);
if x = le�(y) then return y ;

x ← y ;

end
return Nil

Predessor(x): Symmetric to Successor.

November 4, 2022 9 / 16



Binary Search Trees

Successor and Predecessor

Successor(x): Given a node x in a BST, we would like to return the

node containing the next larger key value

If x has a right child, the successor should be the minimum value in the

right subtree.

Otherwise, we should go up the tree until we find a node that is a le�

child, and we return the parent.

Successor(x);

if right(x) 6= Nil then returnMin(right(x)) ;

while parent(x) 6= Nil do
y ← parent(x);
if x = le�(y) then return y ;

x ← y ;

end
return Nil

Predessor(x): Symmetric to Successor.

November 4, 2022 9 / 16



Binary Search Trees

Illustration: Successor

8

5

3

12

9

10

15

Case 1.

8

5

3

12

9

10

15

Case 2.

November 4, 2022 10 / 16



Binary Search Trees

Illustration: Successor

8

5

3

12

9

10

15

Case 1.

8

5

3

12

9

10

15

Case 2.

November 4, 2022 10 / 16



Binary Search Trees

Insertion

Insertion(x, r): Given a new node x , insert it into a BST rooted at r .

If key(x) < key(r), then if le�(r) 6= Nil, call Insert(x, le�(r)), else

insert x as r’s le� child.

Otherwise, key(x) ≥ key(r), if right(r) 6= Nil, call Insert(x, right(r)),
else insert x as r’s right child.

When coding, don’t forget to update the pointers and check ill cases.

Note that every newly inserted node becomes a leaf.

November 4, 2022 11 / 16



Binary Search Trees

Insertion

Insertion(x, r): Given a new node x , insert it into a BST rooted at r .

If key(x) < key(r), then if le�(r) 6= Nil, call Insert(x, le�(r)), else

insert x as r’s le� child.

Otherwise, key(x) ≥ key(r), if right(r) 6= Nil, call Insert(x, right(r)),
else insert x as r’s right child.

When coding, don’t forget to update the pointers and check ill cases.

Note that every newly inserted node becomes a leaf.

November 4, 2022 11 / 16



Binary Search Trees

Insertion

Insertion(x, r): Given a new node x , insert it into a BST rooted at r .

If key(x) < key(r), then if le�(r) 6= Nil, call Insert(x, le�(r)), else

insert x as r’s le� child.

Otherwise, key(x) ≥ key(r), if right(r) 6= Nil, call Insert(x, right(r)),
else insert x as r’s right child.

When coding, don’t forget to update the pointers and check ill cases.

Note that every newly inserted node becomes a leaf.

November 4, 2022 11 / 16



Binary Search Trees

Insertion

Insertion(x, r): Given a new node x , insert it into a BST rooted at r .

If key(x) < key(r), then if le�(r) 6= Nil, call Insert(x, le�(r)), else

insert x as r’s le� child.

Otherwise, key(x) ≥ key(r), if right(r) 6= Nil, call Insert(x, right(r)),
else insert x as r’s right child.

When coding, don’t forget to update the pointers and check ill cases.

Note that every newly inserted node becomes a leaf.

November 4, 2022 11 / 16



Binary Search Trees

Insertion

Insertion(x, r): Given a new node x , insert it into a BST rooted at r .

If key(x) < key(r), then if le�(r) 6= Nil, call Insert(x, le�(r)), else

insert x as r’s le� child.

Otherwise, key(x) ≥ key(r), if right(r) 6= Nil, call Insert(x, right(r)),
else insert x as r’s right child.

When coding, don’t forget to update the pointers and check ill cases.

Note that every newly inserted node becomes a leaf.

November 4, 2022 11 / 16



Binary Search Trees

Illustration: Insertion

8

5

3

12

9

10

156

November 4, 2022 12 / 16



Binary Search Trees

Deletion

Delete(x): Given a node x in a BST, delete it, while maintaining the

tree as a BST

If x is a leaf, simply delete it and update the parent’s pointer.

If x has only one child, bypass it by updating the parent’s and that

child’s pointer.

What if x has two children?

Note that now the successor of x must be the minimum valued node y

in its right subtree, and y has no le� child;

We can replace x by y , and delete y .

November 4, 2022 13 / 16



Binary Search Trees

Deletion

Delete(x): Given a node x in a BST, delete it, while maintaining the

tree as a BST

If x is a leaf, simply delete it and update the parent’s pointer.

If x has only one child, bypass it by updating the parent’s and that

child’s pointer.

What if x has two children?

Note that now the successor of x must be the minimum valued node y

in its right subtree, and y has no le� child;

We can replace x by y , and delete y .

November 4, 2022 13 / 16



Binary Search Trees

Deletion

Delete(x): Given a node x in a BST, delete it, while maintaining the

tree as a BST

If x is a leaf, simply delete it and update the parent’s pointer.

If x has only one child, bypass it by updating the parent’s and that

child’s pointer.

What if x has two children?

Note that now the successor of x must be the minimum valued node y

in its right subtree, and y has no le� child;

We can replace x by y , and delete y .

November 4, 2022 13 / 16



Binary Search Trees

Deletion

Delete(x): Given a node x in a BST, delete it, while maintaining the

tree as a BST

If x is a leaf, simply delete it and update the parent’s pointer.

If x has only one child, bypass it by updating the parent’s and that

child’s pointer.

What if x has two children?

Note that now the successor of x must be the minimum valued node y

in its right subtree, and y has no le� child;

We can replace x by y , and delete y .

November 4, 2022 13 / 16



Binary Search Trees

Deletion

Delete(x): Given a node x in a BST, delete it, while maintaining the

tree as a BST

If x is a leaf, simply delete it and update the parent’s pointer.

If x has only one child, bypass it by updating the parent’s and that

child’s pointer.

What if x has two children?

Note that now the successor of x must be the minimum valued node y

in its right subtree, and y has no le� child;

We can replace x by y , and delete y .

November 4, 2022 13 / 16



Binary Search Trees

Deletion

Delete(x): Given a node x in a BST, delete it, while maintaining the

tree as a BST

If x is a leaf, simply delete it and update the parent’s pointer.

If x has only one child, bypass it by updating the parent’s and that

child’s pointer.

What if x has two children?

Note that now the successor of x must be the minimum valued node y

in its right subtree, and y has no le� child;

We can replace x by y , and delete y .

November 4, 2022 13 / 16



Binary Search Trees

Illustration: Deletion

8

5

3

12

9

10

156

Case 1.

9

5

3

12

10 156

Case 2.

November 4, 2022 14 / 16



Binary Search Trees

Illustration: Deletion

8

5

3

12

9

10

156

Case 1.

9

5

3

12

10 156

Case 2.

November 4, 2022 14 / 16



Binary Search Trees

Tree Rotation

As we have seen, the same set of key values can be stored in di�erent

BSTs, resulting in very di�erent performance.

An important operation that locally adjusts the structure of a BST

while maintaining its search property is rotation.

x

yα

β γ

y

γx

α β

Left Rotate

Right Rotate

November 4, 2022 15 / 16



Binary Search Trees

Tree Rotation

As we have seen, the same set of key values can be stored in di�erent

BSTs, resulting in very di�erent performance.

An important operation that locally adjusts the structure of a BST

while maintaining its search property is rotation.

x

yα

β γ

y

γx

α β

Left Rotate

Right Rotate

November 4, 2022 15 / 16



Binary Search Trees

Tree Rotation

As we have seen, the same set of key values can be stored in di�erent

BSTs, resulting in very di�erent performance.

An important operation that locally adjusts the structure of a BST

while maintaining its search property is rotation.

x

yα

β γ

y

γx

α β

Left Rotate

Right Rotate

November 4, 2022 15 / 16



Binary Search Trees

BST vs. Hashing

An ideal BST takes time O(log n) for most basic operations. An ideal Hash

table takes only O(1) time. So why BST?

BST is more space e�icient.

A hash table typically has a fraction of unused space.

BST is more “persistent”.

As the data set grows, we may need to resize a hash table. We will see in

the next lecture that on average this may not be super expensive, but

this may make the performance less smooth, or “persistent”.

BST is more secure against malicious a�acks.

If an adversary figures out the hash function we use, they can generate

data that causes many collisions and slow down the performance.

BST supports range search and traversal.

Range search example: return all entries whose key values are between

5000 and 10000. BST handles this easily; hashing can be awkward.

Traversal example: return all entries in increasing key values. Very

natural with BST, but ine�icient with hashing.

November 4, 2022 16 / 16



Binary Search Trees

BST vs. Hashing

An ideal BST takes time O(log n) for most basic operations. An ideal Hash

table takes only O(1) time. So why BST?

BST is more space e�icient.

A hash table typically has a fraction of unused space.

BST is more “persistent”.

As the data set grows, we may need to resize a hash table. We will see in

the next lecture that on average this may not be super expensive, but

this may make the performance less smooth, or “persistent”.

BST is more secure against malicious a�acks.

If an adversary figures out the hash function we use, they can generate

data that causes many collisions and slow down the performance.

BST supports range search and traversal.

Range search example: return all entries whose key values are between

5000 and 10000. BST handles this easily; hashing can be awkward.

Traversal example: return all entries in increasing key values. Very

natural with BST, but ine�icient with hashing.

November 4, 2022 16 / 16



Binary Search Trees

BST vs. Hashing

An ideal BST takes time O(log n) for most basic operations. An ideal Hash

table takes only O(1) time. So why BST?

BST is more space e�icient.

A hash table typically has a fraction of unused space.

BST is more “persistent”.

As the data set grows, we may need to resize a hash table. We will see in

the next lecture that on average this may not be super expensive, but

this may make the performance less smooth, or “persistent”.

BST is more secure against malicious a�acks.

If an adversary figures out the hash function we use, they can generate

data that causes many collisions and slow down the performance.

BST supports range search and traversal.

Range search example: return all entries whose key values are between

5000 and 10000. BST handles this easily; hashing can be awkward.

Traversal example: return all entries in increasing key values. Very

natural with BST, but ine�icient with hashing.

November 4, 2022 16 / 16



Binary Search Trees

BST vs. Hashing

An ideal BST takes time O(log n) for most basic operations. An ideal Hash

table takes only O(1) time. So why BST?

BST is more space e�icient.

A hash table typically has a fraction of unused space.

BST is more “persistent”.

As the data set grows, we may need to resize a hash table. We will see in

the next lecture that on average this may not be super expensive, but

this may make the performance less smooth, or “persistent”.

BST is more secure against malicious a�acks.

If an adversary figures out the hash function we use, they can generate

data that causes many collisions and slow down the performance.

BST supports range search and traversal.

Range search example: return all entries whose key values are between

5000 and 10000. BST handles this easily; hashing can be awkward.

Traversal example: return all entries in increasing key values. Very

natural with BST, but ine�icient with hashing.

November 4, 2022 16 / 16



Binary Search Trees

BST vs. Hashing

An ideal BST takes time O(log n) for most basic operations. An ideal Hash

table takes only O(1) time. So why BST?

BST is more space e�icient.

A hash table typically has a fraction of unused space.

BST is more “persistent”.

As the data set grows, we may need to resize a hash table. We will see in

the next lecture that on average this may not be super expensive, but

this may make the performance less smooth, or “persistent”.

BST is more secure against malicious a�acks.

If an adversary figures out the hash function we use, they can generate

data that causes many collisions and slow down the performance.

BST supports range search and traversal.

Range search example: return all entries whose key values are between

5000 and 10000. BST handles this easily; hashing can be awkward.

Traversal example: return all entries in increasing key values. Very

natural with BST, but ine�icient with hashing.

November 4, 2022 16 / 16



Binary Search Trees

BST vs. Hashing

An ideal BST takes time O(log n) for most basic operations. An ideal Hash

table takes only O(1) time. So why BST?

BST is more space e�icient.

A hash table typically has a fraction of unused space.

BST is more “persistent”.

As the data set grows, we may need to resize a hash table. We will see in

the next lecture that on average this may not be super expensive, but

this may make the performance less smooth, or “persistent”.

BST is more secure against malicious a�acks.

If an adversary figures out the hash function we use, they can generate

data that causes many collisions and slow down the performance.

BST supports range search and traversal.

Range search example: return all entries whose key values are between

5000 and 10000. BST handles this easily; hashing can be awkward.

Traversal example: return all entries in increasing key values. Very

natural with BST, but ine�icient with hashing.

November 4, 2022 16 / 16



Binary Search Trees

BST vs. Hashing

An ideal BST takes time O(log n) for most basic operations. An ideal Hash

table takes only O(1) time. So why BST?

BST is more space e�icient.

A hash table typically has a fraction of unused space.

BST is more “persistent”.

As the data set grows, we may need to resize a hash table. We will see in

the next lecture that on average this may not be super expensive, but

this may make the performance less smooth, or “persistent”.

BST is more secure against malicious a�acks.

If an adversary figures out the hash function we use, they can generate

data that causes many collisions and slow down the performance.

BST supports range search and traversal.

Range search example: return all entries whose key values are between

5000 and 10000. BST handles this easily; hashing can be awkward.

Traversal example: return all entries in increasing key values. Very

natural with BST, but ine�icient with hashing.

November 4, 2022 16 / 16


	Binary Search Trees

