Learning Goals

- Nearest Neighbor Search
 - Data structures with Pre-processing
- Reductions
- Streaming model
- ℓ_2 estimate in streaming model

• We are given *n* points $x_1, \ldots, x_n \in \mathbb{R}^d$

- We are given *n* points $x_1, \ldots, x_n \in \mathbb{R}^d$
- Task: Given a new point $y \in \mathbb{R}^d$, output $x^* = \operatorname{argmin}_i ||x_i y||$.

- We are given *n* points $x_1, \ldots, x_n \in \mathbb{R}^d$
- Task: Given a new point $y \in \mathbb{R}^d$, output $x^* = \operatorname{argmin}_i ||x_i y||$.
- Assume $\min_{i\neq j} ||x_i x_i|| \ge 1$, and $\max_{i,j} ||x_i x_i|| \le R$ for some R > 0.

- We are given *n* points $x_1, \ldots, x_n \in \mathbb{R}^d$
- Task: Given a new point $y \in \mathbb{R}^d$, output $x^* = \operatorname{argmin}_i ||x_i y||$.
- Assume $\min_{i\neq j} ||x_i x_j|| \ge 1$, and $\max_{i,j} ||x_i x_j|| \le R$ for some R > 0.
- Naïve solution: go over all data points, in time O(nd).

- We are given *n* points $x_1, \ldots, x_n \in \mathbb{R}^d$
- Task: Given a new point $y \in \mathbb{R}^d$, output $x^* = \operatorname{argmin}_i ||x_i y||$.
- Assume $\min_{i\neq j} ||x_i x_j|| \ge 1$, and $\max_{i,j} ||x_i x_j|| \le R$ for some R > 0.
- Naïve solution: go over all data points, in time O(nd).
- In an ϵ -approximate Nearest Neighbor problem, given $y \in \mathbb{R}^d$, we must return $x^* \in \{x_1, \dots, x_n\}$ such that $||y x^*|| \le (1 + \epsilon) \min_i ||y x_i||$.

- We are given *n* points $x_1, \ldots, x_n \in \mathbb{R}^d$
- Task: Given a new point $y \in \mathbb{R}^d$, output $x^* = \operatorname{argmin}_i ||x_i y||$.
- Assume $\min_{i\neq j} ||x_i x_j|| \ge 1$, and $\max_{i,j} ||x_i x_j|| \le R$ for some R > 0.
- Naïve solution: go over all data points, in time O(nd).
- In an ϵ -approximate Nearest Neighbor problem, given $y \in \mathbb{R}^d$, we must return $x^* \in \{x_1, \ldots, x_n\}$ such that $||y x^*|| \le (1 + \epsilon) \min_i ||y x_i||$.
- Goal: running time $O(d, \log n, 1/\epsilon)$.

Point Location in Equal Balls

We reduce ϵ -approximate nearest neighbor problem to the following problem:

Definition (Point Location in Equal Balls, ϵ -PLEB(r))

We are given n points $x_1, \ldots, x_n \in \mathbb{R}^d$ and radius r. Let $B(x, r) := \{z \in \mathbb{R}^d : ||z - x|| \le r\}$ denote the Euclidean ball of radius r around x. Given a query point $y \in \mathbb{R}^d$:

- If there exists x_i such that $y \in B(x_i, r)$, we must return YES and an x_j such that $y \in B(x_j, (1 + \epsilon)r)$;
- If there exists no x_i such that $y \in B(x_i, (1 + \epsilon)r)$, we must return No.
- Otherwise, we can say either YES or No. If we return YES, we must also return an x_i such that $y \in B(x_i, (1 + \epsilon)r)$.

Reduction from ϵ -NN to PLEB

Claim

Given an algorithm A that solves ϵ -PLEB(r), we can solve ϵ -NN with $O(\log(\log R/\epsilon))$ calls to A.

Reduction from ϵ -NN to PLEB

Claim

Given an algorithm \mathcal{A} that solves ϵ -PLEB(r), we can solve ϵ -NN with $O(\log(\log R/\epsilon))$ calls to \mathcal{A} .

Proof.

We can do a binary search with an ϵ -PLEB(r) oracle and find an r^* such that ϵ -PLEB $(\frac{r^*}{1+\epsilon})$ returns No and ϵ -PLEB (r^*) returns YES with an x^* . This takes $\log(\log_{1+\epsilon}R) = O(\log(\frac{\log R}{\epsilon}))$ calls.

Reduction from ϵ -NN to PLEB

Claim

Given an algorithm \mathcal{A} that solves ϵ -PLEB(r), we can solve ϵ -NN with $O(\log(\log R/\epsilon))$ calls to A.

Proof.

We can do a binary search with an ϵ -PLEB(r) oracle and find an r^* such that ϵ -PLEB $(\frac{r^*}{1+\epsilon})$ returns No and ϵ -PLEB (r^*) returns YES with an x^* . This takes $\log(\log_{1+\epsilon} R) = O(\log(\frac{\log R}{\epsilon}))$ calls.

We then know
$$\min_j ||y - x_j|| \ge \frac{r^*}{1+\epsilon}$$
, and $||y - x^*|| \le r^*(1+\epsilon)$. So $||y - x^*|| \le (1+\epsilon)^2 \min_i ||y - x_i|| \le (1+2\epsilon) \min_i ||y - x_i||$ for $\epsilon < 1$

$$||y-x^*|| \le (1+\epsilon)^2 \min_j ||y-x_j|| \le (1+2\epsilon) \min_j ||y-x_j|| \text{ for } \epsilon < 1.$$

Plan of attack:

- Give a brute-force algorithm with pre-processing
- Use JL-transform and run the brute-force algorithm in the low dimensional space

Plan of attack:

- Give a brute-force algorithm with pre-processing
- Use JL-transform and run the brute-force algorithm in the low dimensional space

Step 1: Brute-force algorithm for PLEB

Plan of attack:

- Give a brute-force algorithm with pre-processing
- Use JL-transform and run the brute-force algorithm in the low dimensional space

Step 1: Brute-force algorithm for PLEB

- Pre-processing:
 - Divide \mathbb{R}^d into small cuboids with side length $\frac{\epsilon r}{\sqrt{d}}$.
 - The idea is that the longest distance between any two points in a cube is ϵr .
 - Create a hash table. For each x_i , and for each cuboid C that intersects with $B(x_i, r)$, hash the pair (C, x_i) .
 - C is the key, x_i is the satellite
- Query:
 - To query y, calculate the cuboid C to which y belongs; query key value C.

Plan of attack:

- Give a brute-force algorithm with pre-processing
- Use JL-transform and run the brute-force algorithm in the low dimensional space

Step 1: Brute-force algorithm for PLEB

- Pre-processing:
 - Divide \mathbb{R}^d into small cuboids with side length $\frac{\epsilon r}{\sqrt{d}}$.
 - ullet The idea is that the longest distance between any two points in a cube is ϵr .
 - Create a hash table. For each x_i , and for each cuboid C that intersects with $B(x_i, r)$, hash the pair (C, x_i) .
 - C is the key, x_i is the satellite
- Query:
 - To query y, calculate the cuboid C to which y belongs; query key value C.
 - If (C, x_i) exists in the hash table, return YES and x_i ; otherwise return No.

• Correctness:

• When we return YES and x_i , we know for some point $y' \in C$, $||x - y'|| \le r$, so $||x - y|| \le ||x - y'|| + ||y' - y|| \le (1 + \epsilon)r$.

• Correctness:

- When we return YES and x_i , we know for some point $y' \in C$, $||x y'|| \le r$, so $||x y|| \le ||x y'|| + ||y' y|| \le (1 + \epsilon)r$.
- When we return No, we know for all x_i , $||y x_i|| \ge r$ (otherwise (C, x_i) should have been hashed).

Correctness:

- When we return YES and x_i , we know for some point $y' \in C$, $||x y'|| \le r$, so $||x y|| \le ||x y'|| + ||y' y|| \le (1 + \epsilon)r$.
- When we return No, we know for all x_i , $||y x_i|| \ge r$ (otherwise (C, x_i) should have been hashed).

• Running time:

• Preprocessing: the volume of $B(x_i, r)$ is $2^{O(d)} r^d / d^{d/2}$; the volume of each cuboid is $(\frac{\epsilon r}{\sqrt{d}})^d$; so for each x_i hash $O(\frac{1}{\epsilon})^d$ cuboids.

Correctness:

- When we return YES and x_i , we know for some point $y' \in C$, $||x y'|| \le r$, so $||x y|| \le ||x y'|| + ||y' y|| \le (1 + \epsilon)r$.
- When we return No, we know for all x_i , $||y x_i|| \ge r$ (otherwise (C, x_i) should have been hashed).

• Running time:

- Preprocessing: the volume of $B(x_i, r)$ is $2^{O(d)} r^d / d^{d/2}$; the volume of each cuboid is $\left(\frac{\epsilon r}{\sqrt{d}}\right)^d$; so for each x_i hash $O\left(\frac{1}{\epsilon}\right)^d$ cuboids.
 - For even d, the volume of a radius r Euclidean ball is $\frac{\pi^{d/2}}{\left(\frac{d}{2}\right)!}r^d$.

Correctness:

- When we return YES and x_i , we know for some point $y' \in C$, $||x y'|| \le r$, so $||x y|| \le ||x y'|| + ||y' y|| \le (1 + \epsilon)r$.
- When we return No, we know for all x_i , $||y x_i|| \ge r$ (otherwise (C, x_i) should have been hashed).

• Running time:

- Preprocessing: the volume of $B(x_i, r)$ is $2^{O(d)} r^d / d^{d/2}$; the volume of each cuboid is $\left(\frac{\epsilon r}{\sqrt{d}}\right)^d$; so for each x_i hash $O\left(\frac{1}{\epsilon}\right)^d$ cuboids.
 - For even d, the volume of a radius r Euclidean ball is $\frac{\pi^{d/2}}{\left(\frac{d}{2}\right)!}r^d$.
- Query: Computing C takes time O(d). Querying the hash table takes time O(1).

Correctness:

- When we return YES and x_i , we know for some point $y' \in C$, $||x y'|| \le r$, so $||x y|| \le ||x y'|| + ||y' y|| \le (1 + \epsilon)r$.
- When we return No, we know for all x_i , $||y x_i|| \ge r$ (otherwise (C, x_i) should have been hashed).

• Running time:

- Preprocessing: the volume of $B(x_i, r)$ is $2^{O(d)} r^d / d^{d/2}$; the volume of each cuboid is $\left(\frac{\epsilon r}{\sqrt{d}}\right)^d$; so for each x_i hash $O\left(\frac{1}{\epsilon}\right)^d$ cuboids.
 - For even d, the volume of a radius r Euclidean ball is $\frac{\pi^{d/2}}{\left(\frac{d}{2}\right)!}r^d$.
- Query: Computing C takes time O(d). Querying the hash table takes time O(1).
- Query time is satisfactory, but pre-processing time is exponential in *d*!

• Using JL-transform, we can first map x_1, \ldots, x_n to $z_1, \ldots, z_n \in \mathbb{R}^t$ where $t = O(\log n/\epsilon^2)$.

- Using JL-transform, we can first map x_1, \ldots, x_n to $z_1, \ldots, z_n \in \mathbb{R}^t$ where $t = O(\log n/\epsilon^2)$.
- When querying $y \in \mathbb{R}^d$, first map it to $y' \in \mathbb{R}^t$ with the same random matrix. With high probability,

$$(1 - \epsilon)||y' - z_i|| \le ||y - x_i|| \le (1 + \epsilon)||y' - z_i||$$
 for every *i*.

- Using JL-transform, we can first map x_1, \ldots, x_n to $z_1, \ldots, z_n \in \mathbb{R}^t$ where $t = O(\log n/\epsilon^2)$.
- When querying $y \in \mathbb{R}^d$, first map it to $y' \in \mathbb{R}^t$ with the same random matrix. With high probability,
 - $(1-\epsilon)||y'-z_i|| \le ||y-x_i|| \le (1+\epsilon)||y'-z_i|| \text{ for every } i.$
- Pre-processing now takes time $O(1/\epsilon)^t = n^{\log(1/\epsilon)/\epsilon^2}$.

- Using JL-transform, we can first map x_1, \ldots, x_n to $z_1, \ldots, z_n \in \mathbb{R}^t$ where $t = O(\log n/\epsilon^2)$.
- When querying $y \in \mathbb{R}^d$, first map it to $y' \in \mathbb{R}^t$ with the same random matrix. With high probability, $(1 \epsilon)||y' z_i|| < ||y x_i|| < (1 + \epsilon)||y' z_i||$ for every i.
- Pre-processing now takes time $O(1/\epsilon)^t = n^{\log(1/\epsilon)/\epsilon^2}$.
- Each query for PLEB takes time $O(td) = O(\frac{d \log n}{\epsilon^2})$.

- Using JL-transform, we can first map x_1, \ldots, x_n to $z_1, \ldots, z_n \in \mathbb{R}^t$ where $t = O(\log n/\epsilon^2)$.
- When querying $y \in \mathbb{R}^d$, first map it to $y' \in \mathbb{R}^t$ with the same random matrix. With high probability, $(1 \epsilon)||y' z_i|| < ||y x_i|| < (1 + \epsilon)||y' z_i||$ for every i.
- Pre-processing now takes time $O(1/\epsilon)^t = n^{\log(1/\epsilon)/\epsilon^2}$.
- Each query for PLEB takes time $O(td) = O(\frac{d \log n}{\epsilon^2})$.

The whole picture for solving ϵ -NN:

Preprocessing time:

$$n^{O(\log(1/\epsilon)/\epsilon^2)} \cdot O\left(\frac{\log R}{\epsilon}\right).$$

- Using JL-transform, we can first map x_1, \ldots, x_n to $z_1, \ldots, z_n \in \mathbb{R}^t$ where $t = O(\log n/\epsilon^2)$.
- When querying $y \in \mathbb{R}^d$, first map it to $y' \in \mathbb{R}^t$ with the same random matrix. With high probability, $(1 \epsilon)||y' z_i|| \le ||y x_i|| \le (1 + \epsilon)||y' z_i||$ for every i.
- Pre-processing now takes time $O(1/\epsilon)^t = n^{\log(1/\epsilon)/\epsilon^2}$.
- Each query for PLEB takes time $O(td) = O(\frac{d \log n}{\epsilon^2})$.

The whole picture for solving ϵ -NN:

Preprocessing time:

$$n^{O(\log(1/\epsilon)/\epsilon^2)} \cdot O\left(\frac{\log R}{\epsilon}\right).$$

• Query time: $O(td) + O(\log(\frac{\log R}{\epsilon})) \cdot O(t)$.

