Learning Goals

- Nearest Neighbor Search
- Data structures with Pre-processing
- Reductions
- Streaming model
- ℓ_{2} estimate in streaming model

(Approximate) Nearest Neighbor Search

- We are given n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$

(Approximate) Nearest Neighbor Search

- We are given n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$
- Task: Given a new point $y \in \mathbb{R}^{d}$, output $x^{*}=\operatorname{argmin}_{i}\left\|x_{i}-y\right\|$.

(Approximate) Nearest Neighbor Search

- We are given n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$
- Task: Given a new point $y \in \mathbb{R}^{d}$, output $x^{*}=\operatorname{argmin}_{i}\left\|x_{i}-y\right\|$.
- Assume $\min _{i \neq j}\left\|x_{i}-x_{j}\right\| \geq 1$, and $\max _{i, j}\left\|x_{i}-x_{j}\right\| \leq R$ for some $R>0$.

(Approximate) Nearest Neighbor Search

- We are given n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$
- Task: Given a new point $y \in \mathbb{R}^{d}$, output $x^{*}=\operatorname{argmin}_{i}\left\|x_{i}-y\right\|$.
- Assume $\min _{i \neq j}\left\|x_{i}-x_{j}\right\| \geq 1$, and $\max _{i, j}\left\|x_{i}-x_{j}\right\| \leq R$ for some $R>0$.
- Naïve solution: go over all data points, in time $O(n d)$.

(Approximate) Nearest Neighbor Search

- We are given n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$
- Task: Given a new point $y \in \mathbb{R}^{d}$, output $x^{*}=\operatorname{argmin}_{i}\left\|x_{i}-y\right\|$.
- Assume $\min _{i \neq j}\left\|x_{i}-x_{j}\right\| \geq 1$, and $\max _{i, j}\left\|x_{i}-x_{j}\right\| \leq R$ for some $R>0$.
- Naïve solution: go over all data points, in time $O(n d)$.
- In an ϵ-approximate Nearest Neighbor problem, given $y \in \mathbb{R}^{d}$, we must return $x^{*} \in\left\{x_{1}, \ldots, x_{n}\right\}$ such that $\left\|y-x^{*}\right\| \leq(1+\epsilon) \min _{i}\left\|y-x_{i}\right\|$.

(Approximate) Nearest Neighbor Search

- We are given n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$
- Task: Given a new point $y \in \mathbb{R}^{d}$, output $x^{*}=\operatorname{argmin}_{i}\left\|x_{i}-y\right\|$.
- Assume $\min _{i \neq j}\left\|x_{i}-x_{j}\right\| \geq 1$, and $\max _{i, j}\left\|x_{i}-x_{j}\right\| \leq R$ for some $R>0$.
- Naïve solution: go over all data points, in time $O(n d)$.
- In an ϵ-approximate Nearest Neighbor problem, given $y \in \mathbb{R}^{d}$, we must return $x^{*} \in\left\{x_{1}, \ldots, x_{n}\right\}$ such that $\left\|y-x^{*}\right\| \leq(1+\epsilon) \min _{i}\left\|y-x_{i}\right\|$.
- Goal: running time $O(d, \log n, 1 / \epsilon)$.

Point Location in Equal Balls

We reduce ϵ-approximate nearest neighbor problem to the following problem:

Definition (Point Location in Equal Balls, ϵ-PLEB(r))

We are given n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ and radius r. Let $B(x, r):=\left\{z \in \mathbb{R}^{d}:\|z-x\| \leq r\right\}$ denote the Euclidean ball of radius r around x. Given a query point $y \in \mathbb{R}^{d}$:

- If there exists x_{i} such that $y \in B\left(x_{i}, r\right)$, we must return YES and an x_{j} such that $y \in B\left(x_{j},(1+\epsilon) r\right)$;
- If there exists no x_{i} such that $y \in B\left(x_{i},(1+\epsilon) r\right)$, we must return No.
- Otherwise, we can say either Yes or No. If we return Yes, we must also return an x_{j} such that $y \in B\left(x_{j},(1+\epsilon) r\right)$.

Reduction from $\epsilon-\mathrm{NN}$ to PLEB

Claim

Given an algorithm \mathcal{A} that solves $\epsilon-\operatorname{PLEB}(r)$, we can solve $\epsilon-\mathrm{NN}$ with $O(\log (\log R / \epsilon))$ calls to \mathcal{A}.

Reduction from $\epsilon-$ NN to PLEB

Claim

Given an algorithm \mathcal{A} that solves ϵ - PLEB (r), we can solve ϵ-NN with $O(\log (\log R / \epsilon))$ calls to \mathcal{A}.

Proof.

We can do a binary search with an ϵ - PLEB (r) oracle and find an r^{*} such that $\epsilon-\operatorname{PLEB}\left(\frac{r^{*}}{1+\epsilon}\right)$ returns No and $\epsilon-\operatorname{PLEB}\left(r^{*}\right)$ returns Yes with an x^{*}. This takes $\log \left(\log _{1+\epsilon} R\right)=O\left(\log \left(\frac{\log R}{\epsilon}\right)\right)$ calls.

Reduction from $\epsilon-$ NN to PLEB

Claim

Given an algorithm \mathcal{A} that solves ϵ - PLEB (r), we can solve ϵ-NN with $O(\log (\log R / \epsilon))$ calls to \mathcal{A}.

Proof.

We can do a binary search with an ϵ - PLEB (r) oracle and find an r^{*} such that $\epsilon-\operatorname{PLEB}\left(\frac{r^{*}}{1+\epsilon}\right)$ returns No and ϵ-PLEB $\left(r^{*}\right)$ returns Yes with an x^{*}. This takes $\log \left(\log _{1+\epsilon} R\right)=O\left(\log \left(\frac{\log R}{\epsilon}\right)\right)$ calls.
We then know $\min _{j}\left\|y-x_{j}\right\| \geq \frac{r^{*}}{1+\epsilon}$, and $\left\|y-x^{*}\right\| \leq r^{*}(1+\epsilon)$. So $\left\|y-x^{*}\right\| \leq(1+\epsilon)^{2} \min _{j}\left\|y-x_{j}\right\| \leq(1+2 \epsilon) \min _{j}\left\|y-x_{j}\right\|$ for $\epsilon<1$.

Solving PLEB

Plan of attack:
(1) Give a brute-force algorithm with pre-processing
(2) Use JL-transform and run the brute-force algorithm in the low dimensional space

Solving PLEB

Plan of attack:
(1) Give a brute-force algorithm with pre-processing
(2) Use JL-transform and run the brute-force algorithm in the low dimensional space
Step 1: Brute-force algorithm for PLEB

Solving PLEB

Plan of attack:
(1) Give a brute-force algorithm with pre-processing
(2) Use JL-transform and run the brute-force algorithm in the low dimensional space
Step 1: Brute-force algorithm for PLEB

- Pre-processing:
- Divide \mathbb{R}^{d} into small cuboids with side length $\frac{\epsilon r}{\sqrt{d}}$.
- The idea is that the longest distance between any two points in a cube is ϵr.
- Create a hash table. For each x_{i}, and for each cuboid C that intersects with $B\left(x_{i}, r\right)$, hash the pair $\left(C, x_{i}\right)$.
- C is the key, x_{i} is the satellite
- Query:
- To query y, calculate the cuboid C to which y belongs; query key value C.

Solving PLEB

Plan of attack:
(1) Give a brute-force algorithm with pre-processing
(2) Use JL-transform and run the brute-force algorithm in the low dimensional space
Step 1: Brute-force algorithm for PLEB

- Pre-processing:
- Divide \mathbb{R}^{d} into small cuboids with side length $\frac{\epsilon r}{\sqrt{d}}$.
- The idea is that the longest distance between any two points in a cube is ϵr.
- Create a hash table. For each x_{i}, and for each cuboid C that intersects with $B\left(x_{i}, r\right)$, hash the pair $\left(C, x_{i}\right)$.
- C is the key, x_{i} is the satellite
- Query:
- To query y, calculate the cuboid C to which y belongs; query key value C.
- If $\left(C, x_{i}\right)$ exists in the hash table, return Yes and x_{i}; otherwise return No.

Analysis of Pre-processing

- Correctness:
- When we return Yes and x_{i}, we know for some point $y^{\prime} \in C$, $\left\|x-y^{\prime}\right\| \leq r$, so $\|x-y\| \leq\left\|x-y^{\prime}\right\|+\left\|y^{\prime}-y\right\| \leq(1+\epsilon) r$.

Analysis of Pre-processing

- Correctness:
- When we return Yes and x_{i}, we know for some point $y^{\prime} \in C$, $\left\|x-y^{\prime}\right\| \leq r$, so $\|x-y\| \leq\left\|x-y^{\prime}\right\|+\left\|y^{\prime}-y\right\| \leq(1+\epsilon) r$.
- When we return No, we know for all $x_{i},\left\|y-x_{i}\right\| \geq r$ (otherwise $\left(C, x_{i}\right)$ should have been hashed).

Analysis of Pre-processing

- Correctness:
- When we return Yes and x_{i}, we know for some point $y^{\prime} \in C$,

$$
\left\|x-y^{\prime}\right\| \leq r, \text { so }\|x-y\| \leq\left\|x-y^{\prime}\right\|+\left\|y^{\prime}-y\right\| \leq(1+\epsilon) r .
$$

- When we return No, we know for all $x_{i},\left\|y-x_{i}\right\| \geq r$ (otherwise $\left(C, x_{i}\right)$ should have been hashed).
- Running time:
- Preprocessing: the volume of $B\left(x_{i}, r\right)$ is $2^{O(d)} r^{d} / d^{d / 2}$; the volume of each cuboid is $\left(\frac{\epsilon r}{\sqrt{d}}\right)^{d}$; so for each x_{i} hash $O\left(\frac{1}{\epsilon}\right)^{d}$ cuboids.

Analysis of Pre-processing

- Correctness:
- When we return Yes and x_{i}, we know for some point $y^{\prime} \in C$,

$$
\left\|x-y^{\prime}\right\| \leq r, \text { so }\|x-y\| \leq\left\|x-y^{\prime}\right\|+\left\|y^{\prime}-y\right\| \leq(1+\epsilon) r
$$

- When we return No, we know for all $x_{i},\left\|y-x_{i}\right\| \geq r$ (otherwise $\left(C, x_{i}\right)$ should have been hashed).
- Running time:
- Preprocessing: the volume of $B\left(x_{i}, r\right)$ is $2^{O(d)} r^{d} / d^{d / 2}$; the volume of each cuboid is $\left(\frac{\epsilon r}{\sqrt{d}}\right)^{d}$; so for each x_{i} hash $O\left(\frac{1}{\epsilon}\right)^{d}$ cuboids.
- For even d, the volume of a radius r Euclidean ball is $\frac{\pi^{d / 2}}{\left(\frac{d}{2}\right)!} r^{d}$.

Analysis of Pre-processing

- Correctness:
- When we return Yes and x_{i}, we know for some point $y^{\prime} \in C$, $\left\|x-y^{\prime}\right\| \leq r$, so $\|x-y\| \leq\left\|x-y^{\prime}\right\|+\left\|y^{\prime}-y\right\| \leq(1+\epsilon) r$.
- When we return No, we know for all $x_{i},\left\|y-x_{i}\right\| \geq r$ (otherwise $\left(C, x_{i}\right)$ should have been hashed).
- Running time:
- Preprocessing: the volume of $B\left(x_{i}, r\right)$ is $2^{O(d)} r^{d} / d^{d / 2}$; the volume of each cuboid is $\left(\frac{\epsilon r}{\sqrt{d}}\right)^{d}$; so for each x_{i} hash $O\left(\frac{1}{\epsilon}\right)^{d}$ cuboids.
- For even d, the volume of a radius r Euclidean ball is $\frac{\pi^{d / 2}}{\left(\frac{d}{2}\right)!} r^{d}$.
- Query: Computing C takes time $O(d)$. Querying the hash table takes time $O(1)$.

Analysis of Pre-processing

- Correctness:
- When we return Yes and x_{i}, we know for some point $y^{\prime} \in C$, $\left\|x-y^{\prime}\right\| \leq r$, so $\|x-y\| \leq\left\|x-y^{\prime}\right\|+\left\|y^{\prime}-y\right\| \leq(1+\epsilon) r$.
- When we return No, we know for all $x_{i},\left\|y-x_{i}\right\| \geq r$ (otherwise $\left(C, x_{i}\right)$ should have been hashed).
- Running time:
- Preprocessing: the volume of $B\left(x_{i}, r\right)$ is $2^{O(d)} r^{d} / d^{d / 2}$; the volume of each cuboid is $\left(\frac{\epsilon r}{\sqrt{d}}\right)^{d}$; so for each x_{i} hash $O\left(\frac{1}{\epsilon}\right)^{d}$ cuboids.
- For even d, the volume of a radius r Euclidean ball is $\frac{\pi^{d / 2}}{\left(\frac{d}{2}\right)!} r^{d}$.
- Query: Computing C takes time $O(d)$. Querying the hash table takes time $O(1)$.
- Query time is satisfactory, but pre-processing time is exponential in d !

Step 2: Dimension Reduction

- Using JL-transform, we can first map x_{1}, \ldots, x_{n} to $z_{1}, \ldots, z_{n} \in \mathbb{R}^{t}$ where $t=O\left(\log n / \epsilon^{2}\right)$.

Step 2: Dimension Reduction

- Using JL-transform, we can first map x_{1}, \ldots, x_{n} to $z_{1}, \ldots, z_{n} \in \mathbb{R}^{t}$ where $t=O\left(\log n / \epsilon^{2}\right)$.
- When querying $y \in \mathbb{R}^{d}$, first map it to $y^{\prime} \in \mathbb{R}^{t}$ with the same random matrix. With high probability,

$$
(1-\epsilon)\left\|y^{\prime}-z_{i}\right\| \leq\left\|y-x_{i}\right\| \leq(1+\epsilon)\left\|y^{\prime}-z_{i}\right\| \text { for every } i
$$

Step 2: Dimension Reduction

- Using JL-transform, we can first map x_{1}, \ldots, x_{n} to $z_{1}, \ldots, z_{n} \in \mathbb{R}^{t}$ where $t=O\left(\log n / \epsilon^{2}\right)$.
- When querying $y \in \mathbb{R}^{d}$, first map it to $y^{\prime} \in \mathbb{R}^{t}$ with the same random matrix. With high probability,

$$
(1-\epsilon)\left\|y^{\prime}-z_{i}\right\| \leq\left\|y-x_{i}\right\| \leq(1+\epsilon)\left\|y^{\prime}-z_{i}\right\| \text { for every } i
$$

- Pre-processing now takes time $O(1 / \epsilon)^{t}=n^{\log (1 / \epsilon) / \epsilon^{2}}$.

Step 2: Dimension Reduction

- Using JL-transform, we can first map x_{1}, \ldots, x_{n} to $z_{1}, \ldots, z_{n} \in \mathbb{R}^{t}$ where $t=O\left(\log n / \epsilon^{2}\right)$.
- When querying $y \in \mathbb{R}^{d}$, first map it to $y^{\prime} \in \mathbb{R}^{t}$ with the same random matrix. With high probability,

$$
(1-\epsilon)\left\|y^{\prime}-z_{i}\right\| \leq\left\|y-x_{i}\right\| \leq(1+\epsilon)\left\|y^{\prime}-z_{i}\right\| \text { for every } i
$$

- Pre-processing now takes time $O(1 / \epsilon)^{t}=n^{\log (1 / \epsilon) / \epsilon^{2}}$.
- Each query for PLEB takes time $O(t d)=O\left(\frac{d \log n}{\epsilon^{2}}\right)$.

Step 2: Dimension Reduction

- Using JL-transform, we can first map x_{1}, \ldots, x_{n} to $z_{1}, \ldots, z_{n} \in \mathbb{R}^{t}$ where $t=O\left(\log n / \epsilon^{2}\right)$.
- When querying $y \in \mathbb{R}^{d}$, first map it to $y^{\prime} \in \mathbb{R}^{t}$ with the same random matrix. With high probability,

$$
(1-\epsilon)\left\|y^{\prime}-z_{i}\right\| \leq\left\|y-x_{i}\right\| \leq(1+\epsilon)\left\|y^{\prime}-z_{i}\right\| \text { for every } i
$$

- Pre-processing now takes time $O(1 / \epsilon)^{t}=n^{\log (1 / \epsilon) / \epsilon^{2}}$.
- Each query for PLEB takes time $O(t d)=O\left(\frac{d \log n}{\epsilon^{2}}\right)$.

The whole picture for solving ϵ - NN :

- Preprocessing time:

$$
n^{O\left(\log (1 / \epsilon) / \epsilon^{2}\right)} \cdot O\left(\frac{\log R}{\epsilon}\right)
$$

Step 2: Dimension Reduction

- Using JL-transform, we can first map x_{1}, \ldots, x_{n} to $z_{1}, \ldots, z_{n} \in \mathbb{R}^{t}$ where $t=O\left(\log n / \epsilon^{2}\right)$.
- When querying $y \in \mathbb{R}^{d}$, first map it to $y^{\prime} \in \mathbb{R}^{t}$ with the same random matrix. With high probability,

$$
(1-\epsilon)\left\|y^{\prime}-z_{i}\right\| \leq\left\|y-x_{i}\right\| \leq(1+\epsilon)\left\|y^{\prime}-z_{i}\right\| \text { for every } i
$$

- Pre-processing now takes time $O(1 / \epsilon)^{t}=n^{\log (1 / \epsilon) / \epsilon^{2}}$.
- Each query for PLEB takes time $O(t d)=O\left(\frac{d \log n}{\epsilon^{2}}\right)$.

The whole picture for solving ϵ - NN :

- Preprocessing time:

$$
n^{O\left(\log (1 / \epsilon) / \epsilon^{2}\right)} \cdot O\left(\frac{\log R}{\epsilon}\right)
$$

- Query time: $O(t d)+O\left(\log \left(\frac{\log R}{\epsilon}\right)\right) \cdot O(t)$.

