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Picture So Far

e Recall: JL-transform multiplies X & RY with a t X d matrix with i.i.d. standard Gaussian entries

« AMS emulates JL-transform with a matrix with {0,1 } entries, each row generated by a 4-wise
independent hash function

* This suggests that the matrix in JL-transform may be made simpler
 Achlioptas (2003) gave a transform with matrix entries from {—1,0,1}, about 2/3 of them being 0
» Count-Sketch in fact approximately preserves £, norm (see homework)
 Recall we had pairwise independent hash functions 4 : [d] — [w]and g : [d] — {£1]}.

« The operation of Count-Sketch can be seen as multiplying X first with a d X d diagonal matrix D
with random entries from {£1}, and then by a w X d matrix M with M}, ;) ; = g(i) and all other
entries 0.



Making JL-transform Faster

» The original JL-transform takes time €2(#d) to multiply the matrix with X

1
. 1= 0(og (E) e~%) if we would like to preserve the norm w.p. 1 — &

 Can we be faster asymptotically?

 [wo approaches:

e Sparse JL-Transforms: construct matrices satisfying the JL-property with few non-
Zero entries

 Fast JL-Transforms: construct matrices satisfying the JL-property with structural
properties which allow faster matrix multiplication [Ailon & Chazelle, 2006]




First Attempt

 If we try with a {0,1} matrix, what happens if we sample, for each entry, just one coordinate of X?

e Consider t X d matrix S, where in each row a uniformly random entry is 1, and all other entries are 0.
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- How well does HSXH% concentrate around its expectation?

- In the worst case, X has only one non-zero entry, then 7 needs to be ®(d) for us to see that entry
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Rotating X
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, Theratio depends heavily on the bases in which we represent X

e E.g., theratiois 1 for (1,0,---,0), but is only 1/\/6_1 if we rotate it to

(1\/d, -+, 1/1/d)

 The ratiois close to 1 if X “aligns well” with the axes, I.e., standard basis

e |dea: first rotate X randomly — equivalent to multiplying it by a random
orthogonal matrix M



Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal d X d matrix with all entries from { 1/\/c_i, — 1/\/c_i 1.

Example. H, = (i 11)/\/5
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Claim. H ; is a Hadamard matrix

Proof. By induction, each entry of H, isin {x1/4/d/2}, so each entry of His in { £ 1/\/21’}.
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Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal d X d matrix with all entries from { 1/\/c_i, — 1/\/c_z’ 1.

Example. H, = (i 11)/\/5

H H -
Walsh-Hadamard Matrices. H, = (e (e /\/5 (S
H;, —H, construction

. H ; is a Hadamard matrix

. The product H X can be computed in time O(d log d). jsimilar to Fast Fourier Transform

Proof. Let T(d) be the time to compute H X, then by recursive calls we have 7(d) = O(d) + 27(d/2)



Randomized Hadamard Matrix

Of course a “good” vector X can become a “bad” H X.
We need to introduce randomness to H
The -1 in H, may as well be elsewhere

Let D be a d X d diagonal matrix with diagonal entries randomly sampled from {—1,1}

H,D is still Hadamard: (H,D)'H,D = D'"H H,D = I.

Write H = H ; henceforth
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Thm. For nonzero X &€ IRd, lety = HDX, then P

Proof. Without loss of generality, assume ||Xx||, = 1. Then ||y||, = [|HDx||, = 1 as well.
To bound ||y||,, note that for each i, y; has the same distribution as Z D,x; where D;’s are i.i.d. Rademacher

J
variables. If we let z; := Djxj, then -[zj] = (). Chernoff bound does not apply...

Thm. (Hoeffding's Bound) If X, ---, X, are independent random variables where X; € [a,, b,]. Let X = Z X

l
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Then P(| X — E[X]| > s5) < 2exp

Proof idea similar to Chernoff bound. Use the following bound on

1%(b — a)?
8

Lemma. (Hoeffding's Lemma) If random variable X is in [a;, b;], then [ XEXD] < eXp




Thm. For nonzero X &€ IRd, lety = HDX, then P

Proof. Without loss of generality, assume ||x||, = 1. Then ||y||, = [|HDXx||, = 1 as well.
To bound ||y||,, note that for each i, y; has the same distribution as Z D;x; where D;’s are i.i.d. Rademacher

J

variables. If we let z; := Djxj, then -[zj] = (). Chernoff bound does not apply since Z; € [—xj/\/c_i,xj/\/c_i]

To apply Hoeffding’s bound, note that Z 4)cj2/012 = 4/d.
J
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The theorem follows from a union bound over zj’s.

Thm. (Hoeffding's Bound) If X, ---, X, are independent random variables where X; € [a;, b;]. Let X = Z X

l
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Then P(| X — E[X]| > 5) < 2exp




The Pieces We Have...

d
For any x € R with ||x|| = 1, [Ij’[ll\/;SHDxll ell—-el+e€]]=7

« D e {—1,0,11%: diagonal matrix with Rademacher entries
« He {— 1/\/C_Z,1/\/C_i}d><d: Walsh Hadamard matrix

. S € {0,114 Sampling matrix, with exactly one 1 in each row
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Fast JL-Transform
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Thm. For any x € R with ||x|| = 1, for ¢ >

d
| [H\ESHDXH cll—-el+e]l >1-6

- De {—-1,0,1 }dXd: diagonal matrix with Rademacher entries

« H e {—1/\/21,1/\51}‘1”’7: Walsh Hadamard matrix

. S € {0,1}>4 Sampling matrix, with exactly one 1 in each row



