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Picture So Far
• Recall: JL-transform multiplies  with a  matrix with i.i.d. standard Gaussian entries


• AMS emulates JL-transform with a matrix with  entries, each row generated by a 4-wise 
independent hash function


• This suggests that the matrix in JL-transform may be made simpler


• Achlioptas (2003) gave a transform with matrix entries from , about 2/3 of them being 0


• Count-Sketch in fact approximately preserves  norm (see homework)


• Recall we had pairwise independent hash functions  and .  


• The operation of Count-Sketch can be seen as multiplying  first with a  diagonal matrix  
with random entries from , and then by a  matrix  with  and all other 
entries 0.

x ∈ ℝd t × d

{0,1}
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x d × d D
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Making JL-transform Faster
• The original JL-transform takes time  to multiply the matrix with 


•  if we would like to preserve the norm w.p. 


• Can we be faster asymptotically?


• Two approaches:


• Sparse JL-Transforms: construct matrices satisfying the JL-property with few non-
zero entries


• Fast JL-Transforms: construct matrices satisfying the JL-property with structural 
properties which allow faster matrix multiplication  [Ailon & Chazelle, 2006]
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First Attempt
• If we try with a  matrix, what happens if we sample, for each entry, just one coordinate of ?


• Consider  matrix , where in each row a uniformly random entry is 1, and all other entries are .





• How well does  concentrate around its expectation?


• In the worst case,  has only one non-zero entry, then  needs to be  for us to see that entry


• Generally, this doesn’t work well when 

{0,1} x

t × d S 0

𝔼 [(Sx)2
i ] =

d

∑
j=1

x2
j

d
⇒ 𝔼 [∥

d
t

Sx∥2
2] = ∥x∥2

2

∥Sx∥2
2

x t Θ(d)

∥x∥∞

∥x∥2
≈ 1



Rotating x
• The ratio  depends heavily on the bases in which we represent 


• E.g., the ratio is 1 for , but is only  if we rotate it to 



• The ratio is close to 1 if  “aligns well” with the axes, i.e., standard basis


• Idea: first rotate  randomly — equivalent to multiplying it by a random 
orthogonal matrix 
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Walsh-Hadamard Matrix
Def. A Hadamard matrix is an orthogonal  matrix with all entries from .d × d {1/ d, − 1/ d}

Example. H2 = (1 1
1 −1)/ 2

Walsh-Hadamard Matrices. Hd = (Hd/2 Hd/2
Hd/2 −Hd/2)/ 2 A recursive 

construction

Claim.  is a Hadamard matrixHd

Proof. By induction, each entry of  is in , so each entry of  is in . Hd/2 {±1/ d/2} Hd {±1/ d}
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Walsh-Hadamard Matrix
Def. A Hadamard matrix is an orthogonal  matrix with all entries from .d × d {1/ d, − 1/ d}

Example. H2 = (1 1
1 −1)/ 2

Walsh-Hadamard Matrices. Hd = (Hd/2 Hd/2
Hd/2 −Hd/2)/ 2 A recursive 

construction

Claim. The product  can be computed in time .Hdx O(d log d) similar to Fast Fourier Transform

Proof. Let  be the time to compute , then by recursive calls we have T(d) Hdx T(d) = O(d) + 2T(d/2)

Claim.  is a Hadamard matrixHd



Randomized Hadamard Matrix
• Of course a “good” vector  can become a “bad” .


• We need to introduce randomness to 


• The -1 in  may as well be elsewhere


• Let  be a  diagonal matrix with diagonal entries randomly sampled from 


•  is still Hadamard: .


• Write  henceforth

x Hdx

Hd

H2

D d × d {−1,1}

HdD (HdD)⊤HdD = D⊤H⊤
d HdD = I

H = Hd

Thm. For nonzero , let , then .x ∈ ℝd y = HDx ℙ [ ∥y∥∞

∥y∥2
≥

2 ln(4d/δ)
d ] ≤

δ
2



Proof.  Without loss of generality, assume .  Then  as well. 
To bound , note that for each ,  has the same distribution as  where ’s are i.i.d. Rademacher 

variables.  If we let , then .  Chernoff bound does not apply…
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Thm. (Hoeffding's Bound) If  are independent random variables where .  Let .  

Then .

X1, ⋯, Xn Xi ∈ [ai, bi] X = ∑
i

Xi

ℙ( |X − 𝔼[X] | ≥ s) ≤ 2 exp (−
2s2
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Proof idea similar to Chernoff bound.   Use the following bound on :𝔼[eλXi]

Lemma. (Hoeffding's Lemma) If random variable  is in , then .X [ai, bi] 𝔼[eλ(X−E[X])] ≤ exp ( λ2(b − a)2

8 )



Proof.  Without loss of generality, assume .  Then  as well. 
To bound , note that for each ,  has the same distribution as  where ’s are i.i.d. Rademacher 

variables.  If we let , then .  Chernoff bound does not apply since  
To apply Hoeffding’s bound, note that .  

. 

The theorem follows from a union bound over ’s.
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The Pieces We Have…
• For any  with , 


• : diagonal matrix with Rademacher entries


• : Walsh Hadamard matrix


• : Sampling matrix, with exactly one 1 in each row


• .  With probability , 


• Let .  Then each .  With probability , .
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Directly applying Hoeffding’s bound yields .  To get the better bound, we need to 
make use of the variance of  and another concentration bound called Berstein’s inequality.
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Fast JL-Transform
Thm.  For any  with , for ,

.


• : diagonal matrix with Rademacher entries


• : Walsh Hadamard matrix


• : Sampling matrix, with exactly one 1 in each row

x ∈ ℝd ∥x∥ = 1 t ≥
2 ln2(4d/δ)ln(4/δ)

ϵ2

ℙ [∥
d
t

SHDx∥ ∈ [1 − ϵ,1 + ϵ]] ≥ 1 − δ

D ∈ {−1,0,1}d×d

H ∈ {−1/ d,1/ d}d×d

S ∈ {0,1}t×d


