Fast JL Transform Hu Fu @SHUFE October 2022

Picture So Far

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^d$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4-wise independent hash function
- This suggests that the matrix in JL-transform may be made simpler
 - Achlioptas (2003) gave a transform with matrix entries from $\{-1,0,1\}$, about 2/3 of them being 0
 - Count-Sketch in fact approximately preserves ℓ_2 norm (see homework)
 - Recall we had pairwise independent hash functions $h : [d] \rightarrow [w]$ and $g : [d] \rightarrow \{\pm 1\}$.
 - The operation of Count-Sketch can be seen as multiplying **x** first with a $d \times d$ diagonal matrix D with random entries from $\{\pm 1\}$, and then by a $w \times d$ matrix M with $M_{h(i),i} = g(i)$ and all other entries 0.

Making JL-transform Faster

- The original JL-transform takes time $\Omega(td)$ to multiply the matrix with ${f x}$

•
$$t = O(\log\left(\frac{1}{\delta}\right)e^{-2})$$
 if we would like

- Can we be faster asymptotically?
- Two approaches:
 - Sparse JL-Transforms: construct matrices satisfying the JL-property with few nonzero entries
 - Fast JL-Transforms: construct matrices satisfying the JL-property with structural properties which allow faster matrix multiplication [Ailon & Chazelle, 2006]

e to preserve the norm w.p. $1-\delta$

First Attempt

$$\mathbb{E}\left[(S\mathbf{x})_i^2\right] = \sum_{j=1}^d \frac{x_j^2}{d} =$$

- How well does $||S\mathbf{x}||_2^2$ concentrate around its expectation?
- Generally, this doesn't work well when $\frac{\|\mathbf{x}\|_{\infty}}{\dots} \approx 1$

• If we try with a $\{0,1\}$ matrix, what happens if we sample, for each entry, just one coordinate of x?

• Consider $t \times d$ matrix S, where in each row a uniformly random entry is 1, and all other entries are 0.

$$\Rightarrow \mathbb{E}\left[\|\sqrt{\frac{d}{t}}S\mathbf{x}\|_{2}^{2}\right] = \|\mathbf{x}\|_{2}^{2}$$

• In the worst case, x has only one non-zero entry, then t needs to be $\Theta(d)$ for us to see that entry

Rotating X

• The ratio $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}}$ depends heavily on the bases in which we represent \mathbf{x}

- E.g., the ratio is 1 for $(1,0,\dots,0)$, but is only $1/\sqrt{d}$ if we rotate it to $(1/\sqrt{d}, \cdots, 1/\sqrt{d})$
- The ratio is close to 1 if \mathbf{x} "aligns well" with the axes, i.e., standard basis
- Idea: first rotate \mathbf{x} randomly equivalent to multiplying it by a random orthogonal matrix M

In fact in the original JL paper, the matrix is a projection onto a random t-dimensional subspace of \mathbf{R}^d

Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1/\sqrt{d}, -1/\sqrt{d}\}$.

Example.
$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} / \sqrt{2}$$

<u>Walsh-Hadamard Matrices</u>. $H_d = \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} / \sqrt{2}$

<u>Claim</u>. H_d is a Hadamard matrix

Proof. By induction, each entry of $H_{d/2}$ is in $H_{d}^{\mathsf{T}}H_{d} = \begin{pmatrix} H_{d/2}^{\mathsf{T}} & H_{d/2}^{\mathsf{T}} \\ H_{d/2}^{\mathsf{T}} & -H_{d/2}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} /$ A recursive construction

$$\{\pm 1/\sqrt{d/2}\}, \text{ so each entry of } H_d \text{ is in } \{\pm 1/\sqrt{d}\}.$$

$$2 = \begin{pmatrix} 2H_{d/2}^{\mathsf{T}}H_{d/2} & 0\\ 0 & 2H_{d/2}^{\mathsf{T}}H_{d/2} \end{pmatrix} / 2 = I$$

Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1/\sqrt{d}, -1/\sqrt{d}\}$.

Example.
$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} / \sqrt{2}$$

<u>Walsh-Hadamard Matrices</u>. $H_d = \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} / \sqrt{2}$

<u>Claim</u>. H_d is a Hadamard matrix

<u>Claim</u>. The product $H_d \mathbf{x}$ can be computed in time $O(d \log d)$.

A recursive construction

similar to Fast Fourier Transform

<u>*Proof.*</u> Let T(d) be the time to compute $H_d \mathbf{x}$, then by recursive calls we have T(d) = O(d) + 2T(d/2)

Randomized Hadamard Matrix

- Of course a "good" vector \mathbf{x} can become a "bad" $H_d \mathbf{x}$.
- We need to introduce randomness to H_d
- The -1 in H_2 may as well be elsewhere
- Let D be a $d \times d$ diagonal matrix with diagonal entries randomly sampled from $\{-1,1\}$
- $H_d D$ is still Hadamard: $(H_d D)^T H_d D = D^T H_d^T H_d D = I$.
- Write $H = H_d$ henceforth

Thm. For nonzero $\mathbf{x} \in \mathbb{R}^d$, let $\mathbf{y} = HD\mathbf{x}$, then \mathbb{P}

$$\frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{2}} \ge \sqrt{\frac{2\ln(4d/\delta)}{d}} \le \frac{\delta}{2}.$$

<u>Thm</u>. For nonzero $\mathbf{x} \in \mathbb{R}^d$, let $\mathbf{y} = HD\mathbf{x}$, then \mathbb{P}

Proof. Without loss of generality, assume $\|\mathbf{x}\|_2 = 1$. Then $\|\mathbf{y}\|_2 = \|HD\mathbf{x}\|_2 = 1$ as well. To bound $\|\mathbf{y}\|_{\infty}$, note that for each *i*, y_i has the same distribution as $\sum D_j x_j$ where D_j 's are i.i.d. Rademacher

variables. If we let $z_i := D_i x_i$, then $\mathbb{E}[z_i] = 0$. Chernoff bound does not apply...

<u>Thm</u>. (Hoeffding's Bound) If X_1, \dots, X_n are independent random variables where $X_i \in [a_i, b_i]$. Let $X = \sum X_i$.

Then $\mathbb{P}(|X - \mathbb{E}[X]| \ge s) \le 2 \exp\left(-\frac{2s^2}{\sum_i (b_i - a_i)^2}\right).$

Proof idea similar to Chernoff bound. Use the following bound on $\mathbb{E}[e^{\lambda X_i}]$:

$$\frac{\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{2}} \ge \sqrt{\frac{2\ln(4d/\delta)}{d}} \le \frac{\delta}{2}.$$

<u>Thm</u>. For nonzero $\mathbf{x} \in \mathbb{R}^d$, let $\mathbf{y} = HD\mathbf{x}$, then \mathbb{P}

Proof. Without loss of generality, assume $\|\mathbf{x}\|_2 = 1$. Then $\|\mathbf{y}\|_2 = \|HD\mathbf{x}\|_2 = 1$ as well. To bound $\|\mathbf{y}\|_{\infty}$, note that for each *i*, y_i has the same distribution as $\sum D_i x_i$ where D_i 's are i.i.d. Rademacher variables. If we let $z_j := D_j x_j$, then $\mathbb{E}[z_j] = 0$. Chernoff bound does not apply since $z_j \in [-x_j/\sqrt{d}, x_j/\sqrt{d}]$

To apply Hoeffding's bound, note that $\sum \frac{4x_j^2}{d^2} = \frac{4}{d}$. $\mathbb{P}\left[|z_j| \ge \sqrt{\frac{2\ln(4d/\delta)}{d}}\right] \le 2e$

The theorem follows from a union bound over z_i 's.

Then $\mathbb{P}(|X - \mathbb{E}[X]| \ge s) \le 2 \exp(|X - \mathbb{E}[X]| \ge s)$

$$\frac{\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{2}} \ge \sqrt{\frac{2\ln(4d/\delta)}{d}} \le \frac{\delta}{2}.$$

$$\exp\left(-\frac{d}{2}\frac{2\ln(4d/\delta)}{d}\right) = 2\cdot\frac{\delta}{4d} = \frac{\delta}{2d}$$

<u>Thm</u>. (Hoeffding's Bound) If X_1, \dots, X_n are independent random variables where $X_i \in [a_i, b_i]$. Let $X = \sum X_i$.

The Pieces We Have...

• For any $\mathbf{x} \in \mathbb{R}^d$ with $\|\mathbf{x}\| = 1$, $\mathbb{P}[\|\sqrt{\frac{d}{t}}SHD\mathbf{x}\| \in [1 - \epsilon, 1 + \epsilon]] = ?$

- $D \in \{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in \{-1/\sqrt{d}, 1/\sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in \{0,1\}^{t \times d}$: Sampling matrix, with exactly one 1 in each row

•
$$\|HD\mathbf{x}\|_2 = 1$$
. With probability $\geq 1 - \frac{\delta}{2}$, $\|HD\mathbf{x}\|_{\infty} \leq \sqrt{\frac{2}{2}}$

• Let
$$\mathbf{z} := SHD\mathbf{x}$$
. Then each $\mathbb{E}[z_i^2] = \frac{1}{d}$, $\mathbb{E}[\|\mathbf{z}\|_2^2] = \frac{t}{d}$. With

$$\underline{\text{Claim. If } z_i^2} \le \frac{2\ln(4d/\delta)}{d}, \text{ for } t = \frac{2\ln^2(4d/\delta)\ln(4/\delta)}{\epsilon^2}, \mathbb{P}\left[\|\sqrt{\frac{d}{t}}Sz\|_2^2 \notin [1-\epsilon, 1+\epsilon]\right] \le \frac{\delta}{2}$$

 $2\ln(4d/\delta)$

th probability $\geq 1 - \frac{\delta}{2}, z_i^2 \leq \frac{2\ln(4d/\delta)}{d}$.

Directly applying Hoeffding's bound yields $t = \Omega(\sqrt{d})$. To get the better bound, we need to make use of the variance of Sz and another concentration bound called Berstein's inequality.

Fast JL-Transform <u>**Thm</u></u>. For any \mathbf{x} \in \mathbb{R}^d with \|\mathbf{x}\| = 1, for t \ge \frac{2 \ln^2(4d/\delta) \ln(4/\delta)}{2},</u>** $\mathbb{P}\left[\left\|\sqrt{\frac{d}{t}}SHD\mathbf{x}\right\| \in [1-\epsilon, 1+\epsilon]\right] \ge 1-\delta.$

- $D \in \{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in \{-1/\sqrt{d}, 1/\sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in \{0,1\}^{t \times d}$: Sampling matrix, with exactly one 1 in each row